首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N‐Phenyl‐substituted pyrrolidines and piperidines have been synthesized by catalytic reduction of nitrobenzene in the presence of 4‐ and 5‐oxoaldehydes, respectively. The process involves reduction of the aromatic nitro group to give the N‐phenylhydroxylamine or aniline followed by reductive amination with the two carbonyl functional groups. Monocyclic systems are generally formed in high yield and are easily purified. The method has also been extended to the synthesis of fused N‐phenylazabicyclics from 2‐(3‐oxo‐propyl)cycloalkanones. A high degree of diastereoselectivity for the trans‐fused product is observed in substrates having an ester group α to the cycloalkanone carbonyl. Bicyclic precursors lacking this ester group give mixtures of cis and trans products. Finally, contrary to previous reports, we have demonstrated that aniline can be substituted for nitrobenzene in these reactions.  相似文献   

2.
A tandem SN2‐Michael addition reaction has been developed for the synthesis of cis‐ and trans‐fused nitrogen and sulfur heterocycles from the cis and trans isomers of ethyl (±)‐(2E)‐3‐[2‐(iodomethyl)cyclo‐hexyl]‐2‐propenoate. Octahydro‐1H‐isoindole‐1‐acetic acid and octahydrobenzo[c]thiophene‐1‐acetic acid derivatives have been prepared and their stereochemistries elucidated using NMR and X‐ray crystallo‐graphic methods. Cyclization substrates for both the cis‐ and the trans‐fused rings are readily available in four steps from known compounds. Yields for the cyclization range from 80‐85% and stereochemical selec‐tivities with respect to the side chain vary from 12.5‐16:1 for the cis‐fused structures to 6‐7.5:1 for the trans‐fused structures. Steric interactions in the transition states for ring closure are proposed to rationalize the observed preferences.  相似文献   

3.
The total syntheses of 11‐methoxydeethyleburnamonines ( 4 ) and ( 13 ) were carried out with use of 6‐methoxytryptophyl bromide ( 5 ) as starting material. Compound 5 was converted in three steps to trans‐ester 8 . Acid‐catalysed epimerization of 8 , lithium aluminum hydride reduction of the ester group, tosylation and substitution with cyanide gave the cis‐nitrile 12 . Acid‐induced cyclization of 12 yielded mainly (±)‐trans‐11‐methoxydeethyleburnamonine ( 13 ), whereas base‐induced cyclization gave (±)‐cis‐11‐methoxydeethyleburnamonine ( 4 ).  相似文献   

4.
The reaction of 1,1,2‐ethenetricarboxylic acid 1,1‐diethyl ester with E‐3‐(2‐furyl)‐2‐propenylamines under the amide condensation conditions (EDCI/HOBt/Et3N) on heating at 80–110°C afforded cis‐fused tricyclic compounds, furo[2,3‐f]isoindoles as major product. On the other hand, the reaction with E‐3‐(3‐furyl)‐2‐propenylamines afforded trans‐fused tricyclic compounds predominantly. The formation of amide/[4 + 2] cycloaddition/hydrogen‐shift reactions proceed sequentially. The observed stereoselectivity of the fused rings has been investigated by the density functional theory calculations. The reaction of 1,1,2‐ethenetricarboxylic acid 1,1‐diethyl ester with 3‐(3‐pyridinyl)‐2‐propen‐1‐amine under the amide condensation conditions afforded HOBt‐incorporated 3,4‐trans‐pyrrolidine selectively. The chemoselectivity and stereoselectivity of the reactions with (3‐heteroaryl)‐2‐propen‐1‐amines depend on the nature of heteroarenes.  相似文献   

5.
Treatment of 1‐aryl‐1‐allen‐6‐enes with [PPh3AuCl]/AgSbF6 (5 mol %) in CH2Cl2 at 25 °C led to intramolecular [3+2] cycloadditions, giving cis‐fused dihydrobenzo[a]fluorene products efficiently and selectively. The reactions proceeded with initial formation of trans/cis mixtures of 2‐alkyl‐1‐isopropyl‐2‐phenyl‐1,2‐dihydronaphthalene cations B, which were convertible into the desired cis‐fused cycloadducts through the combined action of a gold catalyst and a Brønsted acid. Theoretic calculation supports the participation of the trans‐B cation as reaction intermediate. Although HOTf showed similar activity towards several 1‐aryl‐1‐allen‐6‐enes, it lacks generality for this cycloaddition reaction.  相似文献   

6.
A five‐step procedure for the synthesis of cis‐1‐tosyl‐2‐tosyloxymethyl‐3‐(trifluoromethyl)aziridine was developed, starting from 1‐ethoxy‐2,2,2‐trifluoroethanol, involving imination, aziridination, ester reduction, hydrogenation, and N‐,O‐ditosylation steps. Further synthetic elaborations revealed a remarkable difference in the reactivity of cis‐1‐tosyl‐2‐tosyloxymethyl‐3‐(trifluoromethyl)aziridine with respect to aromatic sulfur and oxygen nucleophiles, thus enabling the selective deployment of this versatile substrate as a building block for the synthesis of functionalized aziridines, azetidines, and benzo‐fused dithianes, oxathianes, dioxanes, and (thio)morpholines.  相似文献   

7.
A synthetic approach that provides access to cis‐cyclohepta‐4,8‐diene‐fused pyrrolidines efficiently through AuI‐catalyzed cycloisomerization of 1,6,8‐dienyne carbonates and esters at a low catalyst loading of 2 mol % is reported. Starting carbonates and esters with a pendant alkyl group on the terminal alkenyl carbon center were found to favor tandem 1,2‐acyloxy migration/cyclopropanation followed by Cope rearrangement of the resulting cis‐3‐azabicyclo[3.1.0]hexane intermediate. On the other hand, substrates containing a terminal diene or starting materials in which the distal alkene moiety bears a phenyl substituent were observed to undergo competitive but reversible 1,3‐acyloxy migration prior to the nitrogen‐containing bicyclic ring formation. The delineated reaction mechanism also provides experimental evidence for the reversible interconversion between the oft‐proposed organogold intermediates obtained in this step of the tandem process.  相似文献   

8.
The reactivity of (thiacyclic)‐2,3‐dihydro‐2,2‐dimethyl‐4H‐thiopyran‐4‐one ( 1a ) in light‐induced cycloadditions to furan ( F ), acrylonitrile ( AN ), or 2,3‐dimethylbut‐2‐ene ( TME ) is compared to that of (carbocyclic) 5,5‐dimethylcyclohex‐2‐enone ( 1b ). Whereas for the more‐flexible thiacycle, the efficiency of [2+2]‐photocycloadduct formation with AN or TME is generally much lower, the diastereoselectivity regarding the ring fusion in the bicyclo[4.2.0]octanes is quite similar for both enones. In contrast, 1a affords exclusively trans‐fused [4+2] cycloadducts with F , while 1b gives predominantly the corresponding cis‐fused products.  相似文献   

9.
An efficient, diastereoselective synthesis of substituted and unsubstituted 2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters has been developed based on the tandem reduction‐reductive amination reac tion. Catalytic hydrogenation of a series of 2‐(2‐nitrophenyl)‐5‐oxoalkanoic esters initiates a reaction sequence involving (1) reduction of the aromatic nitro group, (2) condensation of the N‐hydroxylamino (or amino) nitrogen with the side chain carbonyl, and (3) reduction of the seven‐membered cyclic imine. Cyclizations that produce 2‐alkyl‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters are diastereose lective for the product having the C2 alkyl and the C5 ester groups cis. In these reactions, the transannular ester group exerts a strong stereodirecting effect on the reduction of the cyclic imine intermediate, though not as strong as that observed in previous closures of 2‐alkyl‐1,2,3,4‐tetrahydroquinoline‐4‐carboxylic esters. This decrease in diastereoselectivity is attributed to (1) the greater distance between the ester and the imine double bond and (2) the increased conformational mobility of the larger ring, both of which diminish the stereodirecting effect of the ester. Finally, formation of the seven‐membered ring is sufficiently slow that reaction with the side chain ester group competes with heterocycle formation in several of the reactions.  相似文献   

10.
Substituted decarbonylation reaction of ruthenium 1,2‐naphthoquinone‐1‐oxime (1‐nqo) complex, cis‐, cis‐[Ru| ζ2‐N(O)C10‐H6O|2(CO)2] (1), with acetonitrile gave cis, cis‐[Ru | ζ2‐ N(O)C10H6O|2(CO)(NCMe)] (2). Complex 2 was fully characterized by 1H NMR, FAB MS, IR spectra and single crystal X‐ray analysis. Complex 2 maintains the coordination structure of 1 with the two naphthoquinonic oxygen atoms, as well as the two oximato nitrogen atoms located cis to each other, showing that there is no ligand rearrangement of the 1‐nqo ligands during the substitution reaction. The carbonyl group originally trans to the naphthoquinonic oxygen in one 1‐nqo ligand is left in its original position [O(5)‐Ru‐C(1), 174.0(6)°], while the other one originally trans to the oximato group of the other 1‐nqo ligand is substituted by NCMe [N(1)‐Ru‐N(3), 170.6(6)°]. This shows that the carbonyl trans to oximato group is more labile than the one trans to naphthoquinonic O atom towards substitution. This is probably due to the comparatively stronger ± back bonding from ruthenium metal to the carbonyl group trans to naphthoquinonic O atom, than the one trans to oximato group, resulting in the comparatively weaker Ru–‐CO bond for the latter and consequently easier replacement of this carbonyl. Selected coupling of phenylacetylene mediated by 2 gave a single trans‐dimerization product 3, while 2 mediated coupling reaction of methyl propiolate produced three products: one trans‐dimerization product 4 and two cyclotrimeric products 5 and 6.  相似文献   

11.
A short and efficient protocol for the asymmetric synthesis of cis‐ and trans‐3,4‐dihydro‐2,4,8‐trihydroxynaphthalen‐1(2H)‐one ( 1 and 2 , resp.) is described, with a phthalide annulation as the key step. Introduction of a OH substituent at position 2 was performed by Sharpless dihydroxylation of a silyl enol ether or by means of an N‐sulfonyloxaziridine. The absolute configuration of each isomer was determined via Mosher‐ester derivatives. By comparison with previously recorded CD spectra of our natural sample, we established that the natural trans‐ and cis‐isomers from Ceratocystis fimbriata sp. platani were the (?)‐(2S,4S)‐isomer (?)‐ 2 and the (+)‐(2S,4R)‐isomer (+)‐ 1 , respectively.  相似文献   

12.
Cyclohexane‐1,3,5‐tricarbonitrile reached equilibrium having 1,3‐cis‐1,5‐cis and 1,3‐cis‐1,5‐trans isomers in a ratio of 3:7. The cis, cis‐isomer preferred the conformation with three equatorial cyano groups, where as the cis, trans‐isomer displayed two cyano groups on equatorial positions and another cyano group on axial position. Condensation of cis, cis‐cyclohexane‐1,3,5‐tricarbonitrile with L‐(S)‐valinol by the catalysis of ZnCl2 in refluxing 1,2‐dichlorobenzene afforded two isomeric cyclohexane‐1,3,5‐trioxazolines in favor of the 1,3‐cis‐1,5‐trans isomer. Metalation of cis, cis‐cyclohexane‐1,3,5‐tricarbonitrile, followed by alkylations with dimethyl sulfate, benzyl bromide or allyl bromide, gave the cor responding trialkylation products with predominance of 1,3‐cis‐1,5‐trans isomers. The cis, trans‐isomer showed two cyano groups on axial positions and another cyano group on equatorial position, where as the cis, cis‐isomer exhibited three axial cyano groups. Treatment of trimethyl cis, cis‐cyclohexane‐1,3,5‐tricarboxylate with lithium diisopropylamide and dimethyl sulfate afforded mainly the trimethyl ester of Kemp's triacid, which showed three axial carboxylate groups. Two competitive factors, i.e. the steric effect of in coming electrophiles and the dipole‐dipole inter actions of the cyano or carboxylate groups, might inter play to give different stereoselectivities in these reaction systems.  相似文献   

13.
A highly efficient catalytic protocol for the isomerization of substituted amide‐derived olefins is presented that successfully uses a hydride palladium catalyst system generated from [PdCl2(PPh3)2] and HSi(OEt)3. The Z to E isomerization was carried out smoothly and resulted in geometrically pure substituted olefins. Apart from the cistrans isomerization of double bonds, the selective reduction of terminal olefins and activated alkenes was performed with excellent functional group tolerance in the presence of an amide‐derived olefin ligand, and the products were obtained in high isolated yields (up to >99 %). Furthermore, the palladium/hydrosilane system was able to promote the reductive decarbonylation of benzoyl chloride when a (Z)‐olefin with an aromatic amide moiety was used as a ligand.  相似文献   

14.
cis‐ and trans‐2‐imino‐1,3‐ and ‐3,1‐perhydrobenzoxazines and the N‐methyl derivatives of the latter were synthesized from the corresponding cyclic 1,3‐amino alcohol with cyanogen bromide. The configurations of the studied compounds were confirmed by 1H and 13C NMR spectra. All trans‐fused compounds exist in biased chair–chair conformations as expected, whereas the cis‐fused 1,3‐benzoxazines attain exclusively the O‐in conformations. The cis‐fused 3,1‐benzoxazines, especially the 1‐methyl‐substituted derivatives, tend to favor the N‐out form, obviously owing to the favorable axial orientation of this N‐methyl. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The nucleophilic addition (AN) / intramolecular aza‐Michael reaction (IMAMR) process on Ellman’s tert‐butylsulfinyl imines, bearing a Michael acceptor in the ortho position, is studied. This reaction affords 1,3‐disubstituted isoindolines with a wide range of substituents in good yields and diastereoselectivities. Interestingly, careful choice of the base for the aza‐Michael step allows either the cis or the trans diastereoisomers to be exclusively obtained. This stereodivergent cyclization has enabled the synthesis of C2‐symmetric bisacetate‐substituted isoindolines. In addition, bisacetate isoindolines bearing two well‐differentiated ester moieties are also noteworthy because they may allow for the orthogonal synthesis of β,β′‐dipeptides using a single nitrogen atom as a linchpin.  相似文献   

16.
An azobenzene group was linked to β‐cyclodextrin via a histidine spacer ( 1 ) to produce a photoresponsive catalyst. The ester hydrolysis of p‐nitrophenyl acetate, Boc‐L ‐alanine‐p‐nitrophenyl ester and Boc‐D ‐alanine‐p‐nitrophenyl ester was examined in the presence of trans‐ 1 or cis‐ 1 . In the case of cis‐ 1 , the cyclodextrin cavity was used as the substrate binding site during imidazole‐catalyzed ester hydrolysis. This was not possible in the case of trans‐ 1 due to the inclusion of the trans‐azobenzene moiety in the cyclodextrin cavity. Consequently, the catalytic mechanism switches in an on‐off fashion on UV irradiation, associated with the conversion of the azobenzene moiety of 1 from trans to cis.  相似文献   

17.
Herein, we developed a Ru(II)(BPGA) complex that could be used to catalyze chemo‐ and site‐selective C?H oxidation. The described ruthenium complex was designed by replacing one pyridyl group on tris(2‐pyridylmethyl)amine with an electron‐donating amide ligand that was critical for promoting this type of reaction. More importantly, higher reactivities and better chemo‐, and site‐selectivities were observed for reactions using the cis‐ruthenium complex rather than the trans‐one. This reaction could be used to convert sterically less hindered methyne and/or methylene C?H bonds of a various organic substrates, including natural products, into valuable alcohol or ketone products.  相似文献   

18.
The title compound, C12H20O3, (IV), the ethyl ester of which is an intermediate in the synthesis of a compound reported to be highly estrogenic, has been prepared. After the initial steps reported for the synthesis of this ester intermediate were followed, it was converted into the crystalline acid, (IV), for X‐ray analysis. It was verified that (IV) was racemic when prepared. X‐ray analysis showed that anti‐hydrogenation of the double bond had occurred in the synthesis, making the orientation of the carboxyl group cis to the 2‐methyl group and trans to the 3‐ethyl group. NMR spectroscopy showed that the stereochemistry of (IV) was identical with that of its ester precursor. While the earlier report did not note the stereochemistry of this ester, it pointed out that the estrogenic product derived from it possessed the opposite carboxyl‐2‐methyl orientation, i.e.trans, although no X‐ray analysis was performed. In the light of these results and the importance of correlating biological activity with compound structure, the unequivocal characterization of the highly estrogenic compound is warranted.  相似文献   

19.
Ethyl vis‐ and trans‐2‐isothiocyanato‐1‐cyclopentanecarboxylates 2 and 7 were prepared by the reaction of the corresponding alicyclic ethyl 2‐amino‐1‐carboxylates and thiophosgene. The cis‐isothiocyanato compound 2 underwent ring closure with amines in one or two steps, resulting in 3‐substituted‐cis‐2‐thioxocyclopenta[d]pyrimidin‐4‐ones 3a‐g. The trans isomer 7 failed to cyclize, but gave carboxamide 8a,b or thiourea ester derivatives 9a,b.  相似文献   

20.
Tandem reactions for the efficient synthesis of multifunctionalized 1,2,3,4‐tetrahydropyridines, 2,3‐dihydropyridin‐4(1H)‐ones, and pyridine derivatives have been developed and reaction mechanisms have been investigated. Synthetic cascades are initiated by the Zn(OTf)2‐mediated [5+1] cycloaddition of N‐formylmethyl‐substituted tertiary enamides to isocyanides, thus leading to the versatile heterocyclic enamino imine intermediates. Interception of the intermediates by diastereoselective reduction of imine functionality with Me4NBH(OAc)3 afforded 1,6‐disubstituted trans‐3‐hydroxy‐4‐arylamino‐ or ‐alkylamino‐1,2,3,4‐tetrahydropyridines, whereas acylation of the imino group followed by acidic hydrolysis produced 1,6‐disubstituted 3‐acyloxy‐2,3‐dihydropyridin‐4(1H)‐ones. Aerobic oxidation led to the aromatization followed by intermolecular acyl‐group transfer from the pyridinium nitrogen to the 3‐hydroxy moiety, thereby yielding substituted 3‐acyloxy‐4‐aminopyridines. Synthetic potentials of the resulting products have been demonstrated by expedient and highly stereoselective synthesis of cis,cis‐4,5‐dihydroxy‐2‐phenylpiperidine and trans,trans‐4‐amino‐5‐hydroxy‐2‐phenylpiperidine compounds, which are important in medicinal chemistry, through simple and practical reduction reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号