首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title salt, methyl (1R,2R,3S,5S,8S)‐3‐benzoyl­oxy‐8‐methyl‐8‐aza­bicyclo­[3.2.1]octane‐2‐carboxyl­ate tetra­chloro­aurate(III), (C17H22NO4)[AuCl4], has its protonated N atom intra­molecularly hydrogen bonded to the O atom of the methoxy­carbonyl group [N⋯O = 2.755 (6) Å and N—H⋯O = 136°]. Two close inter­molecular C—H⋯O contacts exist, as well as five C—H⋯Cl close contacts. The [AuCl4] anion was found to be distorted square planar.  相似文献   

2.
In view of the importance of the site‐specific substitution of the H‐atom by its stable isotope 2H in a stereoselective/stereospecific manner at the pentose sugar residue, decreasing the spectral overcrowding in various regions of 1D and 2D homo‐ and heteronuclear correlation spectra of oligo‐DNA and ‐RNA, there is always a need for the development of new methods for the incorporation of 2H at different sites of a ribose. High‐yielding multistep syntheses of C(2)‐, and (5R)‐ and (5S)‐3,5‐deuterated ribose derivatives have been envisaged for the application of site‐specific incorporation of multilabeled nucleosides into oligomers to facilitate their structure elucidation by NMR spectroscopy. All syntheses started from D ‐glucose after proper derivatization. In the case of C(2), >97 atom‐% isotope was incorporated, employing an inversion of the configuration at C(2) as the key reaction. For C(5), two different routes were envisaged: on the one hand, deuterated achiral reagent was treated with a conformationally locked sugar moiety 15 , while, on the other, chiral protonated sources were used to transfer the H‐atom to a C(5)‐deuterated aldehyde 18 . In all cases, enantiomeric and isotopic purities were found to be as high as >97% as determined by NMR spectroscopy.  相似文献   

3.
2‐Methylideneglutarate mutase is an adenosylcobalamin (coenzyme B12)‐dependent enzyme that catalyses the equilibration of 2‐methylideneglutarate with (R)‐3‐methylitaconate. This reaction is believed to occur via protein‐bound free radicals derived from substrate and product. The stereochemistry of the formation of the methyl group of 3‐methylitaconate has been probed using a `chiral methyl group'. The methyl group in 3‐([2H1,3H]methyl)itaconate derived from either (R)‐ or (S)‐2‐methylidene[3‐2H1,3‐3H1]glutarate was a 50 : 50 mixture of (R)‐ and (S)‐forms. It is concluded that the barrier to rotation about the C−C bond between the methylene radical centre and adjacent C‐atom in the product‐related radical [.CH2CH(O2CC=CH2)CO2] is relatively low, and that the interaction of the radical with cob(II)alamin is minimal. Hence, cob(II)alamin is a spectator of the molecular rearrangement of the substrate radical to product radical.  相似文献   

4.
Coenzyme B12 can assist radical enzymes that accomplish the vicinal interchange of a hydrogen atom with a functional group. It has been proposed that the Co? C bond homolysis of coenzyme B12 to cob(II)alamin and the 5′‐deoxyadenosyl radical is aided by hydrogen bonding of the corrin C19? H to the 3′‐O of the ribose moiety of the incipient 5′‐deoxyadenosyl radical, which is stabilized by 30 kJ mol?1 (B. Durbeej et al., Chem. Eur. J. 2009 , 15, 8578–8585). The diastereoisomers (R)‐ and (S)‐2,3‐dihydroxypropylcobalamin were used as models for coenzyme B12. A downfield shift of the NMR signal for the C19? H proton was observed for the (R)‐isomer (δ=4.45 versus 4.01 ppm for the (S)‐isomer) and can be ascribed to an intramolecular hydrogen bond between the C19? H and the oxygen of CHOH. Crystal structures of (R)‐ and (S)‐2,3‐dihydroxypropylcobalamin showed C19? H???O distances of 3.214(7) Å (R‐isomer) and 3.281(11) Å (S‐isomer), which suggest weak hydrogen‐bond interactions (?ΔG<6 kJ mol?1) between the CHOH of the dihydroxypropyl ligand and the C19? H. Exchange of the C19? H, which is dependent on the cobalt redox state, was investigated with cob(I)alamin, cob(II)alamin, and cob(III)alamin by using NMR spectroscopy to monitor the uptake of deuterium from deuterated water in the pH range 3–11. No exchange was found for any of the cobalt oxidation states. 3′,5′‐Dideoxyadenosylcobalamin, but not the 2′,5′‐isomer, was found to act as a coenzyme for glutamate mutase, with a 15‐fold lower kcat/KM than 5′‐deoxyadenosylcobalamin. This indicates that stabilization of the 5′‐deoxyadenosyl radical by a hydrogen bond that involves the C19? H and the 3′‐OH group of the cofactor is, at most, 7 kJ mol?1 (?ΔG). Examination of the crystal structure of glutamate mutase revealed additional stabilizing factors: hydrogen bonds between both the 2′‐OH and 3′‐OH groups and glutamate 330. The actual strength of a hydrogen bond between the C19? H and the 3′‐O of the ribose moiety of the 5′‐deoxyadenosyl group is concluded not to exceed 6 kJ mol?1 (?ΔG).  相似文献   

5.
The reactions of enantiomerically pure (1R, 2S)‐(+)‐cis‐1‐aminoindan‐2‐ol, (1S, 2R)‐(‐)‐cis‐1‐aminoindan‐2‐ol, and racemic trans‐1‐aminoindan‐2‐ol with trimethylaluminum, ‐gallium, and ‐indium produce the intramolecularly stabilized, enantiomerically pure dimethylmetal‐1‐amino‐2‐indanolates (1R, 2S)‐(+)‐cis‐Me2AlO‐2‐C*HC7H6‐1‐C*HNH2 ( 1 ), (1S, 2R)‐(‐)‐cis‐Me2AlO‐2C*HC7H6‐1‐C*HNH2 ( 2 ), (1R, 2S)‐(+)‐cis‐Me2GaO‐2‐C*HC7H6‐1‐C*HNH2 ( 3 ), (1R, 2S)‐(+)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 4 ), (1S, 2R)‐(‐)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 5 ), and racemic (+/‐)‐trans‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 6 ). The compounds were characterized by 1H NMR, 13C NMR, 27Al NMR and mass spectra as well as 1 and 3 to 6 by determination of their crystal and molecular structures. The dynamic dissociation/association behavior of the coordinative metal‐nitrogen bond was studied by low temperature 1H NMR spectroscopy.  相似文献   

6.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

7.
The title compound, (S)‐(+)‐4‐[5‐(2‐oxo‐4,5‐di­hydro­imidazol‐1‐yl­sulfonyl)­indolin‐1‐yl­carbonyl]­anilinium chloride (S)‐(+)‐1‐[1‐(4‐amino­benzoyl)­indoline‐5‐sulfonyl]‐4‐phenyl‐4,5‐di­hydro­imidazol‐2‐one, C24H23N4O4S+·Cl?·C24H22N4O4S, crystallizes in space group C2 from a CH3OH/CH2Cl2 solution. In the crystal structure, there are two different conformers with their terminal C6 aromatic rings mutually oriented at angles of 67.69 (14) and 61.16 (15)°. The distances of the terminal N atoms (of the two conformers) from the chloride ion are 3.110 (4) and 3.502 (4) Å. There are eight distinct hydrogen bonds, i.e. four N—H?Cl, three N—H?O and one N—H?N, with one N—H group involved in a bifurcated hydrogen bond with two acceptors sharing the H atom. C—H?O contacts assist in the overall hydrogen‐bonding process.  相似文献   

8.
The title compound, bis(μ‐1,2‐benzene­thiol­ato)‐1:2κ3S,S′:S′;2:1κ3S,S′:S′‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)], [Zn2(μ‐C6H4S2)2(C10H8N2)2], crystallizes with the dinuclear mol­ecule located on a center of symmetry. The coordination geometry about the Zn atom is a modestly distorted trigonal bipyramid, with the axial ligating atoms at an angle of 170.81 (4)° and the angles in the equatorial plane in the range 112.94 (4)–129.95 (4)°. Weak π‐stacking interactions between bi­pyridine ligands on adjacent mol­ecules [interplanar spacing = 3.315 (3) Å] and a possible weak intermolecular C—H⋯S hydrogen bond (H⋯S = 2.84 Å) are seen in the crystal.  相似文献   

9.
The potential‐energy surfaces of the reactions of dirhodium tetracarboxylate (Rh2II,II) catalyzed nitrene (NR) insertion into C H bonds were examined by a DFT computational study. A pure Becke exchange functional (B88) rather than a hybrid exchange functional (B3, BHandH) was found to be appropriate for the calculation of the energy difference between the singlet and triplet Rh2II,II–NH nitrene species. Rh2II,II–NR1 (R1=(S)‐2‐methyl‐1‐butylformyl) is thermodynamically more favorable with a free energy lower than that of Rh2II,II–N(PhI)R1. The singlet and triplet states of Rh2II,II–NR1 have similar stability. Singlet Rh2II,II–NR1 undergoes a concerted NR insertion into the C H bond with simultaneous formation of the N H and N C bonds during C H bond cleavage; triplet Rh2II,II–NR1 undergoes H atom abstraction to produce a diradical, followed by subsequent bond formation by diradical recombination. The singlet pathway is favored over the triplet in the context of the free energy of activation and leads to the retention of the chirality of the C atom in the NR insertion product. The reactivities of the C H bonds toward the nitrene‐insertion reaction follow the order tertiary>secondary>primary. Relative reaction rates were calculated for the six reaction pathways examined in this work.  相似文献   

10.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

11.
12.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

13.
Reaction of [PdCl2(DMSO)2], [PtCl2(DMSO)2], and [RuCl2(η4‐C8H12)(MeCN)2] with S‐acetyl Nβ‐acetyldithiocarbazate (=2‐acetylhydrazinecarbodithioic acid anhydrosulfide with ethanethioic acid; aadt; 1 ), S‐methyl Nβ‐[(5‐nitrothiophene‐2‐yl)methylene]dithiocarbazate (=S‐methyl 2‐[(5‐nitrothiophene‐2‐yl)methylene]hydrazinecarbodithioate; mntdt; 2 ), and S‐benzyl Nβ‐[(5‐nitrothiophene‐2‐yl)methylene]dithiocarbazate (=S‐benzyl 2‐[(5‐nitrothiophene‐2‐yl)methylene]hydrazinecarbodithioate; bntdt; 3 ) led to new complexes [PdCl2(L)], [PtCl2(L)], and [RuCl2(η4‐C8H12)(L)] (L=ligands 1 – 3 ). All these compounds were characterized by elemental analysis, IR, 1H‐ and 13C‐NMR and UV/VIS spectra and thermogravimetric analysis. Ligand 1 coordinates through the thioxo S‐atom and the carbazate N(β) atom, whereas in ligands 2 and 3 the thioxo S‐atom and the azomethine N‐atom are coordinated to the metal ion. Screening of antiamoebic activity of these compounds was performed in vitro against the HK‐9 strain of E. histolytica. All the complexes were more active than their respective ligands; compound 3a showed the most promising activity.  相似文献   

14.
The title compound, [(Z)‐4‐allyl‐2‐(2‐hydroxybenzylidene)thiosemicarbazide‐κS][(E)‐4‐allyl‐1‐(2‐oxidobenzylidene)thiosemicarbazidato‐κ3O,N1,S]copper(II) monohydrate, [Cu(C11H11N3OS)(C11H13N3OS)]·H2O, crystallized as a rotational twin in the monoclinic crystal system (space group Cc) with two formula unit (Z′ = 2) in the asymmetric unit, one of which contains an allyl substituent disordered over two positions. The CuII atom exhibits a distorted square‐planar geometry involving two differently coordinated thiosemicarbazone ligands. One ligand is bonded to the CuII atom in a tridentate manner via the phenolate O, azomethine N and thioamide S atoms, while the other coordinates in a monodentate manner via the S atom only. The complex is stabilized by an intramolecular hydrogen bond, which creates a six‐membered pseudo‐chelate metalla‐ring. The structure analysis indicates the presence of the E isomer for the tridentate ligand and the Z isomer for the monodentate ligand. The crystal structure contains a three‐dimensional network built from intermolecular O—H...O, N—H...O, O—H...N and N—H...S hydrogen bonds.  相似文献   

15.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

16.
Theoretical studies have been carried out on the halogen bonding interaction between para substituted chlorobenzene (Y C6H4Cl, Y = H, NH2, CH3, F, CN, NO2) and N(CH3)3 using ab initio MP2/aug‐cc‐pVDZ and DFT based wB97XD/6‐311++G(d,p) methods. The positive electrostatic potential (VS,max) on the Cl atom and the heterolytic bond breaking enthalpy of the C Cl bond have been calculated and their role on halogen bonding is discussed. The heterolytic bond breaking enthalpy of the C Cl bond is proposed as a measure of the strength of the σ‐hole on Cl atom. The binding strength of the complexes ranging between −6.13 kJ mol−1 and −9.29 kJ mol−1 are linearly related to the VS,max of the Cl atom and the bond breaking enthalpy of the C Cl bond. In addition, energy decomposition analysis was performed on the halogen bonded complexes via symmetry adapted perturbation theory (SAPT) to predict the dominant energy component and the nature of the N···Cl interaction.  相似文献   

17.
Bruceine K ( 1 ), a pentacyclic C20‐quassinoid bearing a unique 12,20‐epoxy moiety, and bruceine L ( 2 ), along with the ten known compounds (6S,7E)‐6,9,10‐trihydroxy‐ and (6S,7E)‐6,9‐dihydroxymegastigma‐4,7‐dien‐3‐one ( 3 and 4 , resp.), cleomiscosins A–C, luteoline, quercetine, bruceantinol, pinoresinol, and thevetiaflavone, were isolated from the ripe fruits of Brucea javanica. Bruceines K ( 1 ) and L ( 2 ) were determined to be (1β,2α,11β,12β,14ξ,15β)‐12,20‐epoxy‐1,2,11,13,14,15‐hexahydroxypicras‐3‐en‐16‐one and (1β,2α,11β,12β,15β)‐13,20‐epoxy‐1,2,11,12‐tetrahydroxy‐16‐oxo‐15‐(senecioyloxy)picras‐3‐en‐21‐oic acid methyl ester (senecioic acid=3‐methylbut‐2‐enoic acid), respectively, on the basis of NMR (1H‐ and 13C‐NMR, DEPT, 1H,1H‐COSY, NOESY, HMQC, and HMBC) and ESI‐MS data. Among the known compounds, (6S,7E)‐6,9,10‐trihydroxy‐ and (6S,7E)‐6,9‐dihydroxymegastigma‐4,7‐dien‐3‐one ( 3 and 4 , resp.), cleomiscosin C, luteoline, quercetine, and thevetiaflavone were isolated for the first time from the Brucea plants.  相似文献   

18.
Bis(1,3‐thia­zolidine‐2‐thione‐κS2)gold(I) bis­(4‐chloro­benzene­sulfonyl)amide, [Au(C3H5NS2)2](C12H8Cl2NS2O4), has no imposed symmetry. Classical N—H⋯N and N—H⋯O hydrogen bonds link the residues to form chains parallel to the b axis. Weaker inter­actions involve C—H⋯O, C—H⋯Au and a number of X⋯Cl contacts (X = Cl, S or Au) clustered in the region y ≃ . In bis­(1‐methyl­imidazolidine‐2‐thione‐κS2)gold(I) bis­(4‐iodo­benzene­sulfonyl)amide, [Au(C4H8N2S)2](C12H8I2NS2O4), the Au atom of the cation and the N atom of the anion lie on the twofold axis (0, y, ) in the space group C2/c. The formula unit forms a self‐contained ring with two symmetry‐equivalent N—H⋯O hydrogen bonds, and weak C—H⋯X (X = O, I or S), Au⋯I and I⋯I contacts are observed. In both compounds, the anions display extended conformations.  相似文献   

19.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

20.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号