首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient dearomatization process of [Cr(arene)(CO)3] complexes initiated by a nucleophilic acetaldehyde equivalent is detailed. It generates in a one‐pot reaction three C? C bonds and two stereogenic centers. This process allowed a rapid assembly of a cis‐decalin ring system incorporating a homoannular diene unit in just two steps starting from aromatic precursors (Scheme 2). The method was applied to the total synthesis of the eudesmane‐type marine furanosesquiterpene (±)‐15‐acetoxytubipofuran ( 2 ). Two routes were successfully used to synthesize the γ‐lactone precursor of the furan ring. The key step in the first approach was a Pd‐catalyzed allylic substitution (Scheme 3), while in the second approach, an Eschenmoser–Claisen rearrangement was highly successful (Scheme 4). The Pd‐catalyzed allylic substitution could be directed to give either the (normal) product with overall retention as major diastereoisomer or the unusual product with inversion of configuration (see Table). For the synthesis of the (?)‐enantiomer (R,R)‐ 2 of 15‐acetoxytubipofuran, an enantioselective dearomatization in the presence of a chiral diether ligand was implemented (Scheme 7), while the (+)‐enantiomer (S,S)‐ 2 was obtained via a diastereoselective dearomatization of an arene‐bound chiral imine auxiliary (Scheme 8). Chiroptical data suggest that a revision of the previously assigned absolute configuration of the natural product is required.  相似文献   

2.
The synthesis of novel 2,2‐disubstituted 2H‐azirin‐3‐amines with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers (1′R,2R)‐ 4a – e and (1′R,2S)‐ 4a – e (Scheme 1, Table 1), which are synthons for the (R)‐ and (S)‐isomers of isovaline, 2‐methylvaline, 2‐cyclopentylalanine, 2‐methylleucine, and 2‐(methyl)phenylalanine, respectively. The configuration at C(2) of the synthons was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group. The reaction of 4 with thiobenzoic acid, benzoic acid, and the dipeptide Z‐Leu‐Aib‐OH ( 12 ) yielded the monothiodiamides 10 , the diamides 11 (Scheme 2, Table 3), and the tripeptides 13 (Scheme 3, Table 4), respectively.  相似文献   

3.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

4.
The β-dienoate (+)-(5S)- 13a (86% ee; meaning of α and β as in α- and β-irone, resp.) was obtained from (?)-(5S)- 9a via acid-catalyzed dehydration of the diastereoisomer mixture of allylic tertiary alcohols (+)-(1S,5S)- 15 /(+)-(1R,5S)- 15 (Scheme 3). Prolonged treatment gave clean isomerization via a [1,5]-H shift to the α-isomer (?)-(R)- 16a with only slight racemization (76% ee; Scheme 4). In contrast, the SnCl4-catalyzed stereospecific cyclization of (+)-(Z)- 6 to (?)-trans- 8a (Scheme 2), followed by a diastereoselective epoxidation to (+)- 11 gave, via acid-catalyzed dehydration of the intermediate allylic secondary alcohol (?)- 12 , the same ester (+)- 13a (Scheme 3), but with poor optical purity (13% ee), due to an initial rapid [1,2]-H shift. The absolute configuration of (?)- 16a–c was confirmed by chemical correlation with (?)-trans- 19 (Scheme 4). 13C-NMR Assignments and absolute configurations of the intermediate esters, acids, aldehydes, and alcohols are presented.  相似文献   

5.
The synthesis and structure determination of adenosine‐derived monomeric building blocks for new oligonucleosides are described. Addition of Me3Si‐acetylide to the aldehyde derived from the known partially protected adenosine 1 led to the epimeric propargylic alcohols 2 and 3 , which were oxidised to the same ketone 4 , while silylation and deprotection led to 7 and 9 (Scheme 1). Introduction of an I substituent at C(8) of the propargylic silyl ethers 10 and 11 was not satisfactory. The protected adenosine 12 was, therefore, transformed in high yield into the 8‐chloro derivative 13 by deprotonation and treatment with PhSO2Cl; the iodide 15 was obtained in a similar way (Scheme 2). The 8‐Cl and the 8‐I derivatives 13 and 15 were transformed into the propargylic alcohols 17 , 18 , 25 , and 26 , respectively (Scheme 3). The propargylic derivatives 2 , 10 , 17 , 19 , 23 , 25 , and 27 were correlated, and their (5′R) configuration was determined on the basis of NOEs of the anhydro nucleoside 19 ; similarly, correlation of 3 , 11 , 18 , 20 , 24 , 26 , and 28 , and NOE's of 20 evidenced their (5′S)‐configuration.  相似文献   

6.
本文以廉价的消旋甲基戊二酸酐为起始原料,完成了具有抗肿瘤活性的海洋天然产物群柱虫内酯(Clavulactone)官能团化的C2-C10片段的立体选择性合成。使用的关键方法包括不对称去对称化获得光学纯手性孤立甲基,和RCM方法构建顺式烯烃。该片段的获得为群柱虫内酯的全合成提供了基础。  相似文献   

7.
The absolute configuration of decipinone ( 2 ), a myrsinane‐type diterpene ester previously isolated from Euphorbia decipiens, has been determined by NMR study of its axially chiral derivatives (aR)‐ and (aS)‐N‐hydroxy‐2′‐methoxy‐1,1′‐binaphthalene‐2‐carboximidoyl chloride ((aR)‐MBCC ( 3a ) and (aS)‐MBCC ( 3b )). The absolute configurations at C(7) and C(13) of 2 determined were (R) and (S), respectively. Therefore, considering the relative configuration of 2 , the absolute configuration determined was (2S,3S,4R,5R,6R,7R,11S,12R,13S,15R).  相似文献   

8.
The heterospirocyclic N‐methyl‐N‐phenyl‐5‐oxa‐1‐azaspiro[2.4]hept‐1‐e n‐2‐amine (6 ) and N‐(5‐oxa‐1‐azaspiro[2.4]hept‐1‐en‐2‐yl)‐(S)‐proline methyl ester ( 7 ) were synthesized from the corresponding heterocyclic thiocarboxamides 12 and 10 , respectively, by consecutive treatment with COCl2, 1,4‐diazabicyclo[2.2.2]octane, and NaN3 (Schemes 1 and 2). The reaction of these 2H‐azirin‐3‐amines with thiobenzoic and benzoic acid gave the racemic benzamides 13 and 14 , and the diastereoisomeric mixtures of the N‐benzoyl dipeptides 15 and 16 , respectively (Scheme 3). The latter were separated chromatographically. The configurations and solid‐state conformations of all six benzamides were determined by X‐ray crystallography. With the aim of examining the use of the new synthons in peptide synthesis, the reactions of 7 with Z‐Leu‐Aib‐OH to yield a tetrapeptide 17 (Scheme 4), and of 6 with Z‐Ala‐OH to give a dipeptide 18 (Scheme 5) were performed. The resulting diastereoisomers were separated by means of MPLC or HPLC. NMR Studies of the solvent dependence of the chemical shifts of the NH resonances indicate the presence of an intramolecular H‐bond in 17 . The dipeptides (S,R)‐ 18 and (S,S)‐ 18 were deprotected at the N‐terminus and were converted to the crystalline derivatives (S,R)‐ 19 and (S,S)‐ 19 , respectively, by reaction with 4‐bromobenzoyl chloride (Scheme 5). Selective hydrolysis of (S,R)‐ 18 and (S,S)‐ 18 gave the dipeptide acids (R,S)‐ 20 and (S,S)‐ 20 , respectively. Coupling of a diastereoisomeric mixture of 20 with H‐Phe‐OtBu led to the tripeptides 21 (Scheme 5). X‐Ray crystal‐structure determinations of (S,R)‐ 19 and (S,S)‐ 19 allowed the determination of the absolute configurations of all diastereoisomers isolated in this series.  相似文献   

9.
(−)‐(3S)‐3‐(Tosylamino)butano‐4‐lactone ( 1 ) and its derivative ethyl (−)‐(3S)‐4‐iodo‐3‐(tosylamino)butanoate ( 2 ) are presented as easily accessible chiral building blocks for the construction of a range of different macrolactam frameworks important for the synthesis of naturally occurring polyamine alkaloids as well as for establishing a substance library of such compounds, including S‐containing derivatives for biological tests. In addition to that, the absolute configuration of the spermine alkaloid (−)‐(R)‐budmunchiamine A ( 3 ) from Albizia amara was determined by total synthesis according to the new methodology.  相似文献   

10.
Discrepancies between chiroptical data from the literature and our determination of the structure of the title compounds (+)‐ 5 and (+)‐ 9a were resolved by an unambiguous assignment of their absolute configuration. Accordingly, the dextrorotatory cis‐3‐hydroxy esters have (3R,4R)‐ and the laevorotatory enantiomers (3S,4S)‐configuration. The final evidences were demonstrated on both enantiomers (+)‐ and (?)‐ 5 by biological reduction of 4 by bakers' yeast and stereoselective [RuII(binap)]‐catalyzed hydrogenations of 4 (Scheme 2), by the application of the NMR Mosher method on (+)‐ and (?)‐ 5 (Scheme 3), as well as by the transformation of (+)‐ 5 into a common derivative and chiroptical correlation (Scheme 4).  相似文献   

11.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

12.
Synthesis of (+)-(5S, 6S)-Azafrin Methyl Ester; Absolute Configuration of Aeginetic Acid and of Further Vicinal Apocarotenediols We describe the synthesis of a series of optically active vicinal apo-β-carotenediols. Thus, starting from (+)-(5S, 6S)-5,6-dihydroxy-5,6-dihydro-β-ionone ( 2 ) we have prepared the (Z/E)-isomeric (+)-C15-esters 7 and 8 , the (+)-retinoic derivatives 14 , 15 , 18 , 19 and (+)-methyl azafrinate ( 22 ), the enantiomer of the naturally occur-ring compound (s. Scheme 1). Our synthesis also establishes the absolute configura-tion of aeginetic acid ( 24 ), aeginetoside ( 25 ) and aeginetin ( 26 ), compounds isolated from the root parasite Aeginetia indica by Indian and Japanese workers (s. Scheme 2). The presented synthesis of optically active methyl azafrinate confirms our previous assignment [14] of the absolute configuration of azafrin ( 1a ), which was based on degradative evidence.  相似文献   

13.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. III. A New Concept for the Synthesis of the Enantiomeric Astaxanthins A new and efficient concept for the total synthesis of (3S, 3'S)- and (3R, 3'R)-astaxanthin ( 1a and 1c , resp.) in high overall yield and up to 99,2% enantiomeric purity is described. Key intermediates are the (S)- and (R)-acetals 10 and 17 , respectively (Scheme 2). These chiral building blocks were synthesized via three different routes: a) functionalization of the enantiomeric 3-hydroxy-6-oxo-isophorons4) 2 and 11 , respectively (Scheme 2); b) optical resolution of 3,4-dihydroxy-compound4) 19 (Scheme 3), and c) fermentative reductions of 6-oxo-isophorone derivatives (Schemes 4 and 5). - The absolute configurations of the two intermediates 12 and 13 (Scheme 2) have been confirmed by X-ray analysis. - The final steps leading to the enantiomeric astaxanthins are identical with those described for optically inactive astaxanthin [1].  相似文献   

14.
Enzymatic resolution of racemic 1,4,5,6‐tetrachloro‐2‐(hydroxymethyl)‐7,7‐dimethoxybicyclo[2.2.1]hept‐5‐ene (rac‐ 1 ) using various lipases in vinyl acetate as acetyl source was studied. The obtained enantiomerically enriched (+)‐(1,4,5,6‐tetrachloro‐7,7‐dimethoxybicyclo[2.2.1]hept‐5‐en‐2‐yl)methyl acetate ((+)‐ 2 ; 94% ee), upon treatment with Na in liquid NH3, followed by Amberlyst‐15 resin in acetone, provided (−)‐5‐(hydroxymethyl)bicyclo[2.2.1]hept‐2‐en‐7‐one ((−)‐ 7 ), which is a valuable precursor for the synthesis of carbasugar derivatives. Subsequent Baeyer–Villiger oxidation afforded a nonseparable mixture of bicyclic lactones, which was subjected to LiAlH4 reduction and then acetylation. The resultant compounds (−)‐ 11 and (+)‐ 12 were submitted to a cis‐hydroxylation reaction, followed by acetylation, to afford the novel carbasugar derivatives (1S,2R,3S,4S,5S)‐4,5‐bis(acetoxymethyl)cyclohexane‐1,2,3‐triyl triacetate ((−)‐( 13 )) and (1R,3R,4R,6R)‐4,6‐bis(acetoxymethyl)cyclohexane‐1,2,3‐triyl triacetate ((−)‐( 14 )), respectively, with pseudo‐C2‐symmetric configuration. The absolute configuration of enantiomerically enriched unreacted alcohol (−)‐ 1 (68% ee) was determined by X‐ray single‐crystal analysis by anchoring optically pure (R)‐1‐phenylethanamine. Based on the configurational correlation between (−)‐ 1 and (+)‐ 2 , the absolute configuration of (+)‐ 2 was determined as (1R,2R,4S).  相似文献   

15.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

16.
Synthesis of a Cyclic Depsipeptide via an Amide Cyclization The synthesis of (S)-Pms-(R)-Pro-(S)-Ala-Aib-N(CH3)2 ( 12 ) has been achieved according to Scheme 3. For the formation of fragment 11 , the reaction of Z-alanine (Z = benzyloxycarbonyl) and 3-dimethylamino-2,2-dimethyl-2-azirine ( 1 ) has been used, whereby 1 serves as an aminoisobutyric-acid dimethylamide (aib-N(CH3)2) equivalent. Treatment of a suspension of 12 in toluene with HCl gas at 100° led to the cyclic depsipeptide 13 in 72% yield (Scheme 4). In presence of water, the acid 14 was isolated as the sole product. A mechanism for the formation of 13 and 14 via an oxazolinone intermediate, is postulated in Scheme 4.  相似文献   

17.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

18.
The reactions of 1,3‐dioxolane‐2‐thione ( 3 ) with (S)‐2‐methyloxirane ((S)‐ 1 ) and with (R)‐2‐phenyloxirane ((R)‐ 2 ) in the presence of SiO2 in anhydrous dichloroalkanes led to the optically active spirocyclic 1,3‐oxathiolanes 8 with Me at C(7) and 9 with Ph at C(8), respectively (Schemes 2 and 3). The analogous reaction of 1,3‐dimethylimidazolidine‐2‐thione ( 4a ) with (R)‐ 2 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 10 ) in 83% yield and 97% ee together with 1,3‐dimethylimidazolidin‐2‐one ( 11a ). In the cases of 3‐phenyloxazolidine‐2‐thione ( 4b ) and 3‐phenylthiazolidine‐2‐thione ( 4c ), the reaction with (RS)‐ 2 yielded the racemic thiirane (RS)‐ 10 , and the corresponding carbonyl compounds 11b and 11c (Scheme 4 and Table 1). The analogous reaction of 4a with 1,2‐epoxycyclohexane (= 7‐oxabicyclo[4.1.0]heptane; 7 ) afforded thiirane 12 and the corresponding carbonyl compound 11a (Scheme 5). On the other hand, the BF3‐catalyzed reaction of imidazolidine‐2‐thione ( 5 ) with (RS)‐ 2 yielded the imidazolidine‐2‐thione derivative 13 almost quantitatively (Scheme 6). In a refluxing xylene solution, 1,3‐diacetylimidazolidine‐2‐thione ( 6 ) and (RS)‐ 2 reacted to give two imidazolidine‐2‐thione derivatives, 13 and 14 (Scheme 7). The structures of 13 and 14 were established by X‐ray crystallography (Fig.).  相似文献   

19.
Configuration of the Vitamin-D3-Metabolite 25,26-Dihydroxycholecalciferol: Synthesis of (25S,26)- and (25R,26)-Dihydroxycholecalciferol For selective synthesis of the title compounds, (25S)- 1b and (25R)- 1b (Scheme 1), the protected cholesterol precursors (25S)- 6 and (25R)- 6 were prepared from stigmasterol-derived steroid-units 4a-d and C5-side chain building blocks 5a–d by Grignard- or Wittig-coupling (Scheme 2), the configuration at C(25) of the target compounds being already present in the C5-units. Conversion of the cholesterol intermediates to the corresponding vitamin-D3 derivatives was carried out via the 7,8-didehydrocholesterol compounds (25S)- 2b and (25R)- 2b (Scheme 1), using the established photochemical-thermal transformation of the 5,7-diene system to the seco-triene system of cholecalciferol. The configuration at C(25) of the cholesterol precursors as assigned on basis of the known configuration of the C5-units used, was found to be in agreement with the result of a single crystal X-ray analysis on compound 11 . The configuration at C(25) remained untouched on conversion of the cholesterol ring system to the seco-triene system of vitamin D3 as evident from comparison of the lanthanide-induced CD. Cotton effects observed for (25S)- 3b and (25S) 1b . 25,26-Dihydroxycholecalciferol observed as a natural vitamin-D3 metabolite has (25S)-configuration.  相似文献   

20.
The absolute configuration of the naturally occurring isomers of 6β‐benzoyloxy‐3α‐tropanol ( 1 ) has been established by the combined use of chiral high‐performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)‐ 1 , prepared in two steps from racemic 6‐hydroxytropinone ( 4 ), was subjected to chiral high‐performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high‐performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR(+)‐ 1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100–950 cm‐1 region were compared with those of the enantiomers of esters derived from 3α,6β‐tropanediol. In addition, an enantiomerically enriched sample of 4 , instead of OR(±)‐ 4 , was used for the same transformation sequence, whose high‐performance liquid chromatography follow‐up allowed their spectroscopic correlation. All evidences lead to the OR(+)‐(1S,3R,5S,6R) and OR(?)‐(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR(+)‐(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR(?)‐(1R,3S,5R,6S) absolute configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号