首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
With the inclusion of all terms up to the third order in the membrane strain to consider the geometric nonlinearity in deformation, a third-order implicit model and a fourth-order explicit model for the vibration transformation between extensional and flexural modes in thin-walled cylindrical shells are established and solved numerically. Numerical instability is observed in numerical solutions based on the explicit model. It is found that such numerical instability does not result from the accumulated numerical errors in the numerical integration process, but from the neglecting of higher order terms in the formulation of the problem. With the inclusion of all terms up to the fourth order in the strain energy, the explicit model can predict a stable vibration history with periodic mode transformations between the two modes. The same 2:1 internal resonance of the vibration mode transformation is predicted by both models. As flexural stress growth is concerned, the two models matches very well during the first group of peaks but lag in phase gradually appears in later group of stress peaks based on the implicit model. This is understood to be resulting from the limited number of terms included in the series expansions based on the explicit model, which allows the most likely excited flexural mode get a larger share of energy transferred from the principle mode and as a result flexural stress arrives at peaks earlier based on the explicit model.  相似文献   

2.
Massively parallel finite element methods for large-scale computation of storm surges and tidal flows are discussed here. The finite element computations, carried out using unstructured grids, are based on a three-step explicit formulation and on an implicit space–time formulation. Parallel implementations of these unstructured grid-based formulations are carried out on the Fujitsu Highly Parallel Computer AP1000 and on the Thinking Machines CM-5. Simulations of the storm surge accompanying the Ise-Bay typhoon in 1959 and of the tidal flow in Tokyo Bay serve as numerical examples. The impact of parallelization on this type of simulation is also investigated. The present methods are shown to be useful and powerful tools for the analysis of storm surges and tidal flows. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The current paper is focused on investigating a Jacobian‐free Newton–Krylov (JFNK) method to obtain a fully implicit solution for two‐phase flows. In the JFNK formulation, the Jacobian matrix is not directly evaluated, potentially leading to major computational savings compared with a simple Newton's solver. The objectives of the present paper are as follows: (i) application of the JFNK method to two‐fluid models; (ii) investigation of the advantages and disadvantages of the fully implicit JFNK method compared with commonly used explicit formulations and implicit Newton–Krylov calculations using the determination of the Jacobian matrix; and (iii) comparison of the numerical predictions with those obtained by the Canadian Algorithm for Thermaulhydraulics Network Analysis 4. Two well‐known benchmarks are considered, the water faucet and the oscillating manometer. An isentropic two‐fluid model is selected. Time discretization is performed using a backward Euler scheme. A Crank–Nicolson scheme is also implemented to check the effect of temporal discretization on the predictions. Advection Upstream Splitting Method+ is applied to the convective fluxes. The source terms are discretized using a central differencing scheme. One explicit and two implicit formulations, one with Newton's solver with the Jacobian matrix and one with JFNK, are implemented. A detailed grid and model parameter sensitivity analysis is performed. For both cases, the JFNK predictions are in good agreement with the analytical solutions and explicit profiles. Further, stable results can be achieved using high CFL numbers up to 200 with a suitable choice of JFNK parameters. The computational time is significantly reduced by JFNK compared with the calculations requiring the determination of the Jacobian matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A hybrid time stepping scheme is developed and implemented by a combination of explicit Runge–Kutta with implicit LU‐SGS scheme at the level of system matrix. In this method, the explicit scheme is applied to those grid cells of blocks that have large local time steps; meanwhile, the implicit scheme is applied to other grid cells of blocks that have smaller allowable local time steps in the same flow field. As a result, the discretized governing equations can be expressed as a compound of explicit and implicit matrix operator. The proposed method has been used to compute the steady transonic turbulent flow over the RAE 2822 airfoil. The numerical results are found to be in excellent agreement with the experimental data. In the validation case, the present scheme saved at least 50% of the memory resources compared with the fully implicit LU‐SGS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
When the two‐dimensional shallow water equations are applied to solve practical irrigation problems, additional numerical difficulties arise. Large friction coefficients, dry bed conditions and singular infiltration terms engender new challenges which are addressed here to build a finite element method that is robust enough for this type of application. The proposed method is a stabilized formulation based on the symmetric quasi‐linear form and the set of entropy variables. The robustness of the method is increased with a discontinuity capturing operator. A predictor multi‐corrector algorithm is employed to solve the generalized trapezoidal rule. One of the novel features of the present technique is that an ‘explicit’ method has been developed with characteristics of implicit methods, so that the solution can be advanced at a convective CFL number of 1, regardless of the source terms. This leads to an economic procedure. Finally, an entropy production (in) equality is developed, which ensures the correct physical behaviour of the model and helps to determine the correct sign of the infiltration term. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Dynamic parallel Galerkin domain decomposition procedures with grid modification for semi‐linear parabolic equation are given. These procedures allow one to apply different domain decompositions, different grids, and interpolation polynomials on the sub‐domains at different time levels when necessary, in order to capture time‐changing localized phenomena, such as, propagating fronts or moving layers. They rely on an implicit Galerkin method in the sub‐domains and simple explicit flux calculation on the inter‐domain boundaries by integral mean method to predict the inner‐boundary conditions. Thus, the parallelism can be achieved by these procedures. These procedures are conservative both in the sub‐domains and across inter‐boundaries. The explicit nature of the flux prediction induces a time step limitation that is necessary to preserve stability, but this constraint is less severe than that for a fully explicit method. Stability and convergence analysis in L2‐norm are derived for these procedures. The experimental results are presented to confirm the theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We present a new unconditionally positivity‐preserving (PP) implicit time integration method for the DG scheme applied to shallow water flows. This novel time discretization enhances the currently used PP DG schemes, because in the majority of previous work, explicit time stepping is implemented to deal with wetting and drying. However, for explicit time integration, linear stability requires very small time steps. Especially for locally refined grids, the stiff system resulting from space discretization makes implicit or partially implicit time stepping absolutely necessary. As implicit schemes require a lot of computational time solving large systems of nonlinear equations, a much larger time step is necessary to beat explicit time stepping in terms of CPU time. Unfortunately, the current PP implicit schemes are subject to time step restrictions due to a so‐called strong stability preserving constraint. In this work, we hence give a novel approach to positivity preservation including its theoretical background. The new technique is based on the so‐called Patankar trick and guarantees non‐negativity of the water height for any time step size while still preserving conservativity. In the DG context, we prove consistency of the discretization as well as a truncation error of the third order away from the wet–dry transition. Because of the proposed modification, the implicit scheme can take full advantage of larger time steps and is able to beat explicit time stepping in terms of CPU time. The performance and accuracy of this new method are studied for several classical test cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Classical semi‐implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes equations induce, for high‐Reynolds number flows, severe restrictions on the time step. Such restrictions can be relaxed by using semi‐Lagrangian schemes essentially based on splitting the full problem into an explicit transport step and an implicit diffusion step. In comparison with the standard characteristics method, the semi‐Lagrangian method has the advantage of being much less CPU time consuming where spectral methods are concerned. This paper is devoted to the comparison of the ‘semi‐implicit’ and ‘semi‐Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical results on the advection equation, Burger's equation and finally two‐ and three‐dimensional Navier–Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
?????? 《力学与实践》2010,32(3):96-100
合隐式和显式时间积分技术,对结构非线性动力反应分析提出一种并行混合时间积分算 法. 该算法采用区域分解技术. 将并发性引入到算法中,即利用显式时间积分技术进行界面 节点积分而利用隐式算法求解局部子区域. 为实现并行混合时间积分算法,设计了灵活的并 行数据信息流. 编写了该算法的程序,在工作站机群实现了数值算例,验证了算法的精度和 性能. 计算结果表明该算法具有良好的并行性能,优于隐式算法.  相似文献   

14.
This investigation is concerned with the use of an implicit integration method with adjustable numerical damping properties in the simulation of flexible multibody systems. The flexible bodies in the system are modeled using the finite element absolute nodal coordinate formulation (ANCF), which can be used in the simulation of large deformations and rotations of flexible bodies. This formulation, when used with the general continuum mechanics theory, leads to displacement modes, such as Poisson modes, that couple the cross section deformations, and bending and extension of structural elements such as beams. While these modes can be significant in the case of large deformations, and they have no significant effect on the CPU time for very flexible bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can be associated with very high frequencies that can be a source of numerical problems when explicit integration methods are used. The implicit integration method used in this investigation is the Hilber–Hughes–Taylor method applied in the context of Index 3 differential-algebraic equations (HHT-I3). The results obtained using this integration method are compared with the results obtained using an explicit Adams-predictor-corrector method, which has no adjustable numerical damping. Numerical examples that include bodies with different degrees of flexibility are solved in order to examine the performance of the HHT-I3 implicit integration method when the finite element absolute nodal coordinate formulation is used. The results obtained in this study show that for very flexible structures there is no significant difference in accuracy and CPU time between the solutions obtained using the implicit and explicit integrators. As the stiffness increases, the effect of some ANCF coupled deformation modes becomes more significant, leading to a stiff system of equations. The resulting high frequencies are filtered out when the HHT-I3 integrator is used due to its numerical damping properties. The results of this study also show that the CPU time associated with the HHT-I3 integrator does not change significantly when the stiffness of the bodies increases, while in the case of the explicit Adams method the CPU time increases exponentially. The fundamental differences between the solution procedures used with the implicit and explicit integrations are also discussed in this paper.  相似文献   

15.
随机载荷是工程结构在服役中经常承受的一种复杂的载荷形式,通常采用统计学特性对其进行描述。对随机载荷作用下的结构进行拓扑优化设计是一项极具挑战性的工作,其主要难点在于,(1) 传统隐式拓扑优化方法的设计变量数巨大,且用于结构动态性能拓扑优化问题时存在虚假模态等数值不稳定问题; (2) 对结构的随机动力响应统计量及其灵敏度进行计算需要极大的计算量; (3) 隐式拓扑优化框架下的分析模型与优化模型强耦合,导致结构有限元模型具有极高的自由度,进一步加剧了上述困难。本文基于移动可变形组件框架和虚拟激励法理论,提出了一种平稳随机载荷作用下结构的显式拓扑优化设计方法。通过将一系列可移动和可变形的结构组件作为优化的基础单元,实现了使用少量设计变量描述结构拓扑构型的目的。采用虚拟激励法、自由度删除技术和模态位移法有效降低了对结构进行随机振动分析和灵敏度分析的计算量。在此基础上,以结构柔顺度的标准差为目标函数、以设计域内实体材料的体积为约束条件,实现了限带白噪声作用下结构的拓扑优化设计,并通过数值算例验证了本文方法的有效性。  相似文献   

16.
This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A flexible, fully automated, computer‐algebra algorithm is developed for solving a class of non‐linear partial‐differential evolution equations arising frequently in the modeling of two‐dimensional transient free‐surface viscous thin‐film flows. The method, which is formulated for solving spatially periodic problems, is based upon an explicit multiple‐timescale asymptotic approximation of the thin‐film thickness. It admits the resolution of diverse physical phenomena by employing a finite geometric progression of increasingly slow timescales. The method is implemented on a challenging test problem comprising the evolution of an annular film of viscous liquid, with a free surface, adhering to the exterior of a horizontal rotating circular cylinder; as a model for numerous industrially motivated coating flows, this benchmark problem has been analyzed in diverse numerical and theoretical studies, against whose results those of the present method are compared. The explicit algebraic form of the solution admits a study of large‐time evolutionary dynamics that lies beyond the reach of considerably more expensive conventional numerical solvers, thereby shedding new light on the hitherto‐undiscovered explicit dependence of large‐time evolutionary fluid dynamics in terms of independent parameters describing gravitational and capillary effects. The results obtained from the new computer‐algebra procedure are demonstrated to be in good agreement with those obtained from a bespoke efficient numerical integration method that is spectrally accurate in space and 8th‐order (Runge–Kutta) in time. Newly discovered mechanisms describing the decay of free‐surface wave modes, from arbitrary initial conditions to the steady state, are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

20.
This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open‐channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal‐order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second‐order accurate fractional‐step method was used to handle the implicit velocity–pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third‐order accurate Runge–Kutta method and the implicit second‐order accurate Crank–Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first‐order accurate Euler method. The DNS FEM model calculated the scalar‐plume development and the mean plume path. In particular, it calculated the plume meandering in the wall‐normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号