首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We present quantitative calculations of the mode‐selective stereomutation tunneling and parity violation in chiral hydrogen thioperoxide (‘oxadisulfane') isotopomers XSOY with X, Y=H, D, and T. The torsional tunneling stereomutation dynamics are investigated with a quasi‐adiabatic channel quasi‐harmonic reaction path Hamiltonian approach, which treats the torsional motion anharmonically in detail and all remaining coordinates as harmonic (but anharmonically coupled to the reaction coordinate). We predict how stereomutation is catalyzed or inhibited by excitation of various vibrational modes compared to the corresponding stereomutation dynamics of the vibrational ground state. Parity‐violating potentials were calculated with our recent multiconfiguration linear response (MC‐LR) approach in the random phase approximation (RPA). We find that, in agreement with general scaling expectations, the parity‐violating energy difference for the equilibrium structures of the two HSOH enantiomers (ca. 5×10?12J mol?1) is situated intermediate between HOOH and HSSH. Our results on the stereomutation dynamics and the influence of parity violation on these are discussed in relation to investigations for the analogous molecules H2O2, H2S2, and Cl2S2. As expected in XSOY (X, Y=H, D, and T), this influence is much larger than in the corresponding H2O2 isotopomers, but smaller than in H2S2 or Cl2S2.  相似文献   

2.
We report quantitative calculations of stereomutation tunneling in the disulfane isotopomers H2S2, D2S2, and T2S2, which are chiral in their equilibrium geometry. The quasi‐adiabatic channel, quasi‐harmonic reaction path Hamiltonian approach used here treats stereomutation including all internal degrees of freedom. The torsional motion is handled as an anharmonic reaction coordinate in detail, whereas all the remaining degrees of freedom are taken into account approximately. We predict how stereomutation is catalyzed or inhibited by excitation of the various vibrational modes. The agreement of our theoretical results with spectroscopic data from the literature on H2S2 and D2S2 is excellent. We furthermore predict the influence of parity violation on stereomutation as characterized approximately by the ratio (ΔEpv/ΔE±) of the (local or vibrationally averaged) parity violating potential ΔEpv and the tunneling splittings ΔE± in the symmetrical case. This ratio is exceedingly small for the reference molecules H2O2 and D2O2, and still very small (2⋅10−6 cm−1) for H2S2, which, thus, all exhibit essentially parity conservation in the dynamics. However, for D2S2 it is ca. 0.002, and for T2S2 it is ca. 1, which seems to be the first case where such intermediate mixing through parity violation is quantitatively predicted for spectroscopically accessible molecules. The consequences for the spectroscopic detection of molecular parity violation are discussed briefly also in relation to other molecules.  相似文献   

3.
Measuring the parity‐violating energy difference ΔpvE between the enantiomers of chiral molecules is a major challenge of current physical‐chemical stereochemistry. An important step towards this goal is to identify suitable molecules for such experiments by means of theory. This step has been made by calculations for the complex dynamics of tunneling and electroweak quantum chemistry of parity violation in the “classic” molecule trisulfane, HSSSH, which satisfies the relevant conditions for experiments almost ideally, as the molecule is comparatively simple and parity violation clearly dominates over tunneling in the ground state. At the same time, the barrier for stereomutation is easily overcome by the S?H infrared chromophore.  相似文献   

4.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

5.
After a set of 32 free radicals was presented (Int J Chem Kin 34, 550–560, 2002), an additional 60 free radicals (Set‐2) were studied and characterized by energy minimum structures, harmonic vibrational wave numbers ωe, moments of inertia IA, IB, and IC, heat capacities Cop(T), standard entropies So(T), thermal energy contents Ho(T) ? Ho(0), and standard enthalpies of formation ΔfHo(T) at the G3MP2B3 level of theory. Thermodynamic functions at T = 298.15 K are presented and compared with recent experimental values where these are available. The mean absolute deviation between calculated and experimental ΔfHo(298.15) values by the previous set of 32 radicals is 3.91 kJ mol?1. For the sake of comparison, only 49 species out of the 60 radicals of Set‐2 are characterized by experimental enthalpies of formation, and the corresponding mean absolute deviation between calculated and experimental ΔfHo(298.15) values is 8.96 kJ mol?1. This situation is cause for demand of more and also more accurate experimental values. In addition to the above properties, parent molecules of a large set of the respective radicals are calculated to obtain bond dissociation energies Do(298.15). Radical stabilization owing to resonance is discussed using the complete sets of total atomic spin densities ρ as a support. In particular, a short review about recent developments of the first‐order Jahn–Teller radical c‐C5H5? is presented. In addition, radicals with negative bond energies are described, such as ?CH2OOH where the reaction path to CH2O + HO? has been calculated, as well as radicals which have two different parent molecules, for example C?N? O?. For the reaction HO? + CO → H? + CO2, two reaction paths are characterized by a total of 14 stationary points where the intermediate radicals HO? ?CO and HC(O)O? are involved. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 661–686, 2004  相似文献   

6.
The base hydrolysis of (αβS) (salicylato) (tetraethylenepentamine)cobalt(III) has been investigated in MeOH + water and DMSO + water media (0–70% (v/v) cosolvents) at 20.0 ? t°C ? 35.0 and I = 0.10 mol dm?3 (ClO4?). The phenoxide species [(tetren)CoO2CC6H4O]+ undergoes both OH?-independent and OH?-catalyzed hydrolysis via SN1ICB and SN1CB mechanism, respectively. The OH?-independent hydrolysis of the phenoxide species is catalyzed by both DMSO + water and MeOH + water media, the former exerting a much stronger rate accelerating effect than the latter. The OH?-catalyzed reaction is strongly accelerated by DMSO + water medium but insensitive to the composition of MeOH + water medium up to 40% (v/v) MeOH beyond which it was not detectable under the experimental conditions. Data analysis has been attempted on the basis of the solvent stabilizing and destabilizing effects on the initial state and transition state of the concerned reactions. The nonlinear variation of the activation parameters, ΔH and ΔS, with solvent compositions presumably indicates that the solvent structural effects mediate the energetics of solvation of the initial state and transition state of the concerned reactions. The linearity in ΔH vs. ΔS plot accomodating all data for k1 and k2 paths in DMSO + water and MeOH + water further suggests that the solvent effects on these parameters are mutually compensatory.  相似文献   

7.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

8.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating valence-electron correlation have been performed to determine the equilibrium structure of ethyloxonium ([CH3CH2OH2]+) and examine its modes of unimolecular dissociation. An asymmetric structure (1) is predicted to be the most stable form of ethyloxonium, but a second conformational isomer of Cs symmetry lies only 1.4 kJ mol?1 higher in energy than 1. Four unimolecular decomposition pathways for 1 have been examined involving loss of H2, CH4, H2O or C2H4. The most stable fragmentation products, lying 65 kJ mol?1 above 1, are associated with the H2 elimination reaction. However, large barriers of 257 and 223 kJ mol?1 have to be surmounted for H2 and CH4 loss, respectively. On the other hand, elimination of either C2H4 or H2O from ethyloxonium can proceed without a barrier to the reverse associations and, with total endothermicities of 130 and 160 kJ mol?1, respectively, these reactions are expected to dominate at lower energies. A second important equilibrium structure on the surface is a hydrogen-bridged complex, lying 53 kJ mol?1 above 1. This complex is involved in the C2H4 elimination reaction, acts as an intermediate in the proton-transfer reaction connecting [C2H5]+ +H2O and C2H4 + [H3O]+ and plays an important role in the isotopic scrambling that has been observed experimentally in the elimination of either H2O or C2H4 from ethyloxonium. The proton affinity of ethanol was calculated as 799 kJ mol?1, in close agreement with the experimental value of 794 kJ mol?1.  相似文献   

9.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

10.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The reaction of [FeL(MeOH)2] {where L is the tetradentate N2O2‐coordinating Schiff base‐like ligand (E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoate)(2−) and MeOH is methanol} with 3‐aminopyridine (3‐apy) in methanol results in the formation of the octahedral complex (3‐aminopyridine‐κN1){(E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoato)(2−)‐κ4O3,N,N′,O3′}(methanol‐κO)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3‐apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octahedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin‐crossover behavior. An infinite two‐dimensional hydrogen‐bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T‐dependent susceptibility measurements revealed that the complex remains in the high‐spin state over the entire temperature range investigated.  相似文献   

12.
The complex (C11H18NO)2CuCl4 (s), which may be a potential effective drug, was synthesized. X‐ray crystallography, elemental analysis, and chemical analysis were used to characterize the structure and composition of the complex. Lattice energy and ionic radius of the anion of the complex were derived from the crystal data of the title compound. In addition, a reasonable thermochemical cycle was designed, and standard molar enthalpies of dissolution for reactants and products of the synthesis reaction of the complex were measured by an isoperibol solution‐reaction calorimeter. The enthalpy change of the reaction was calculated to be ΔrH?m=(2.69±0.02) kJ·mol?1 from the data of the above standard molar enthalpies of dissolution. Finally, the standard molar enthalpy of formation of the title compound was determined to be ΔrH?m[(C11 H18NO)2CuCl4, s]= ? (1822.96±6.80) kJ·mol?1 in accordance with Hess law.  相似文献   

13.
The self‐assembly of DyIII–3‐hydroxypyridine (3‐OHpy) complexes with hexacyanidocobaltate(III) anions in water produces cyanido‐bridged {[DyIII(3‐OHpy)2(H2O)4] [CoIII(CN)6]}?H2O ( 1 ) chains. They reveal a single‐molecule magnet (SMM) behavior with a large zero direct current (dc) field energy barrier, ΔE=266(12) cm?1 (≈385 K), originating from the single‐ion property of eight‐coordinated DyIII of an elongated dodecahedral geometry, which are embedded with diamagnetic [CoIII(CN)6]3? ions into zig‐zag coordination chains. The SMM character is enhanced by the external dc magnetic field, which results in the ΔE of 320(23) cm?1 (≈460 K) at Hdc=1 kOe, and the opening of a butterfly hysteresis loop below 6 K. Complex 1 exhibits white DyIII‐based emission realized by energy transfer from CoIII and 3‐OHpy to DyIII. Low temperature emission spectra were correlated with SMM property giving the estimation of the zero field ΔE. 1 is a unique example of bifunctional magneto‐luminescent material combining white emission and slow magnetic relaxation with a large energy barrier, both controlled by rich structural and electronic interplay between DyIII, 3‐OHpy, and [CoIII(CN)6]3?.  相似文献   

14.
邻苯二胺与5-氯-2-羟基二苯酮、邻香草醛作用合成了一种不对称希夫碱配体C27H21N2O3Cl(H2L)。在正丁醇和甲醇体系中硝酸铀酰与该配体反应合成了一种固体希夫碱配合物[UO2(HL)(NO3)(H2O)]·H2O。通过元素分析、IR、UV、1H NMR、TG-DTG及摩尔电导率分析等手段对合成的配合物进行了表征,用非等温热重法研究了铀(Ⅵ)配合物的热分解反应动力学,推断出第三步热分解的动力学方程为:d α /d t = A · e- E/RT ·3/2[(1- α )-1/3-1]-1,得到了动力学参数E和A。并计算出了活化熵△S¹和活化吉布斯自由能△G¹。  相似文献   

15.
The gas phase reaction kinetics of OH with three di‐amine rocket fuels—N2H4, CH3NHNH2, and (CH3)2NNH2—was studied in a discharge flow tube apparatus and a pulsed photolysis reactor under pseudo‐first‐order conditions in [OH]. Direct laser‐induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [diamine] yielded the following absolute second‐order OH rate coefficient expressions; k1 = (2.17 ± 0.39) × 10?11 e(160±30)/T, k2 = (4.59 ± 0.83) × 10?11 e(85±35)/T and k3 = (3.35 ± 0.60) × 10?11 e(175±25)/T cm3 molec?1 s?1, respectively, for reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the temperature range 232–637 K. All three reactions did not show any discernable pressure dependence on He or N2 buffer gas pressure of up to 530 torr. The magnitude of the weak temperature and the lack of pressure effects of the OH + N2H4 reaction rate coefficient suggest that a simple direct metathesis of H‐atom may not be important compared to addition of the OH to one of the N‐centers of the diamine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab initio study [ 3 ]. However, in the alkylated diamines, direct H‐abstraction from the methyl moiety cannot be completely ruled out. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 354–362, 2001  相似文献   

16.
A new series of bifunctional organoiron thio‐ and seleno‐terephthalate complexes — (η‐C5H5)Fe(CO)2ECO(C6H4)COX [E = S; X = C6H11NH, (C2H5)2N; and E = Se; X = P? CH3? C6H4? NH, C6H5? C2N2O? S, m? NO2? C6H4? CH?CH? COO] — has been synthesized via the organic transformation reactions of the terephthaloyl chloride precursors η‐(C5H5)Fe(CO)2ECO(C6H4)COCl with the desired nucleophiles. These new complexes were characterized by elemental analysis, IR and 1H NMR spectra. The above complexes, in addition to some other selected analogues, were tested for their antifungal, antibacterial and mutagenic activity. Our results show that all the selenium‐containing compounds have antifungal activity on Candida albicans and antibacterial effects against Bacillus subtilis and Staphylococcus aureus. Four of the six selenium‐containing derivatives exhibited growth inhibitory effects against Pseudomonas aeruginosa and/or Escherichia coli. Sulfur‐containing derivatives elicited activity against C. albicans, and each one of them showed activity against at least one of the bacterial strains that have been used in this investigation. Two selenium‐ and two sulfur‐containing derivatives showed mutagenic activity against one or more than one strain of the Salmonella typhimurium using the Ames test. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
The kinetic isotope effect for the abstraction of hydrogen/deuterium from dimethylnitramine and dimethylnitramine-d6 by chlorine atoms has been studied in the temperature range 273–353 K. The rate constant ratio kH0/kD is given by the Arrhenius expression, kH/kD=(0.92 ± 0.07)exp(286 ± 250/RT), where R is expressed in cal mol?1 K?1. The absolute rate constant for the deuterium abstraction reaction is extrapolated as kD=(1.50 ± 0.90) × 10?10 exp(?1,486 ± 370/RT) cm3 molecule?1 s?1. The temperature dependence of the kinetic isotope effect was calculated using the conventional transition-state theory, and the obtained values for kH/kD and ΔEH, D are in good agreement with the experimental value for a bent transition state geometry, with two new vibrational frequencies of 340 cm?1 (272 cm?1) corresponding to the in-plane and out-of-plane motions of hydrogen (deuterium) atoms in the Cl…H…C arrangement. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
In the isomeric title compounds, viz. 2‐, 3‐ and 4‐(chloro­methyl)pyridinium chloride, C6H7ClN+·Cl?, the secondary interactions have been established as follows. Classical N—H?Cl? hydrogen bonds are observed in the 2‐ and 3‐isomers, whereas the 4‐isomer forms inversion‐symmetric N—H(?Cl??)2H—N dimers involving three‐centre hydrogen bonds. Short Cl?Cl contacts are formed in both the 2‐isomer (C—Cl?Cl?, approximately linear at the central Cl) and the 4‐isomer (C—Cl?Cl—C, angles at Cl of ca 75°). Additionally, each compound displays contacts of the form C—H?Cl, mainly to the Cl? anion. The net effect is to create either a layer structure (3‐isomer) or a three‐dimensional packing with easily identifiable layer substructures (2‐ and 4‐isomers).  相似文献   

19.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

20.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号