首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that all doubly‐even self‐dual codes of lengths 8 or 16, and the extended Golay code, can be constructed from some binary Hadamard matrix of orders 8, 16, and 24, respectively. In this note, we demonstrate that every extremal doubly‐even self‐dual [32,16,8] code can be constructed from some binary Hadamard matrix of order 32. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
We present the full classification of Hadamard 2-(31,15,7), Hadamard 2-(35, 17,8) and Menon 2-(36,15,6) designs with automorphisms of odd prime order. We also give partial classifications of such designs with automorphisms of order 2. These classifications lead to related Hadamard matrices and self-dual codes. We found 76166 Hadamard matrices of order 32 and 38332 Hadamard matrices of order 36, arising from the classified designs. Remarkably, all constructed Hadamard matrices of order 36 are Hadamard equivalent to a regular Hadamard matrix. From our constructed designs, we obtained 37352 doubly-even [72,36,12] codes, which are the best known self-dual codes of this length until now.   相似文献   

3.
There are exactly 60 inequivalent Hadamard matrices of order 24. In this note, we give a classification of the self‐dual ??5‐codes of length 48 constructed from the Hadamard matrices of order 24. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
The Hadamard matrices of order 44 possessing automorphisms of order 7 are classified. The number of their equivalence classes is 384. The order of their full automorphism group is calculated. These Hadamard matrices yield 1683 nonisomorphic 3-(44,22,10) designs, 57932 nonisomorphic 2-(43,21,10) designs, and two inequivalent extremal binary self-dual doubly even codes of length 88 (one of them being new).  相似文献   

5.
Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of Hadamard matrices (HMs) with interesting algebraic properties. Ó Catháin and Röder described a classification algorithm for CHMs of order 4 n based on relative difference sets in groups of order 8 n ; this led to the classification of all CHMs of order at most 36. On the basis of work of de Launey and Flannery, we describe a classification algorithm for CHMs of order 4 p with p a prime; we prove refined structure results and provide a classification for p 13 . Our analysis shows that every CHM of order 4 p with p 1 mod 4 is equivalent to a HM with one of five distinct block structures, including Williamson‐type and (transposed) Ito matrices. If p 3 mod 4 , then every CHM of order 4 p is equivalent to a Williamson‐type or (transposed) Ito matrix.  相似文献   

6.
《Discrete Mathematics》2024,347(1):113661
In this note, we study the existence of Hadamard matrices of order 36 formed by codewords of weight 36 in some ternary near-extremal self-dual codes of length 36.  相似文献   

7.
In this paper we introduce the notion of orbit matrices of Hadamard matrices with respect to their permutation automorphism groups and show that under certain conditions these orbit matrices yield self-orthogonal codes. As a case study, we construct codes from orbit matrices of some Paley type I and Paley type II Hadamard matrices. In addition, we construct four new symmetric (100,45,20) designs which correspond to regular Hadamard matrices, and construct codes from their orbit matrices. The codes constructed include optimal, near-optimal self-orthogonal and self-dual codes, over finite fields and over Z4.  相似文献   

8.
Up to isomorphisms there are precisely eight symmetric designs with parameters (71, 35, 17) admitting a faithful action of a Frobenius group of order 21 in such a way that an element of order 3 fixes precisely 11 points. Five of these designs have 84 and three have 420 as the order of the full automorphism group G. If |G| = 420, then the structure of G is unique and we have G = (Frob21 × Z5):Z4. In this case Z(G) = 〈1〉, G′ has order 35, and G induces an automorphism group of order 6 of Z7. If |G| = 84, then Z(G) is of order 2, and in precisely one case a Sylow 2‐subgroup is elementary abelian. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 144–149, 2002; DOI 10.1002/jcd.996  相似文献   

9.
All Hadamard 2-(63,31,15) designs invariant under the dihedral group of order 10 are constructed and classified up to isomorphism together with related Hadamard matrices of order 64. Affine 2-(64,16,5) designs can be obtained from Hadamard 2-(63,31,15) designs having line spreads by Rahilly’s construction [A. Rahilly, On the line structure of designs, Discrete Math. 92 (1991) 291-303]. The parameter set 2-(64,16,5) is one of two known sets when there exists several nonisomorphic designs with the same parameters and p-rank as the design obtained from the points and subspaces of a given dimension in affine geometry AG(n,pm) (p a prime). It is established that an affine 2-(64,16,5) design of 2-rank 16 that is associated with a Hadamard 2-(63,31,15) design invariant under the dihedral group of order 10 is either isomorphic to the classical design of the points and hyperplanes in AG(3,4), or is one of the two exceptional designs found by Harada, Lam and Tonchev [M. Harada, C. Lam, V.D. Tonchev, Symmetric (4, 4)-nets and generalized Hadamard matrices over groups of order 4, Designs Codes Cryptogr. 34 (2005) 71-87].  相似文献   

10.
11.
We complete the classification of all symmetric designs of order nine admitting an automorphism of order six. As a matter of fact, the classification for the parameters (35,17,8), (56,11,2), and (91,10,1) had already been done, and in this paper we present the results for the parameters (36,15,6), (40,13,4), and (45,12,3). We also provide information about the order and the structure of the full automorphism groups of the constructed designs. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 301–312, 2006  相似文献   

12.
It is shown in this paper that if p is a prime and q = 2p ? 1 is a prime power, then there exists an Hadamard matrix of order 4(2p + 1).  相似文献   

13.
All quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 7 without fixed points or blocks are enumerated. Up to isomorphism, there are exactly 246 such designs. All but four of these designs are embeddable as derived designs in symmetric 2-(64, 28, 12) designs, producing in this way at least 8784 nonisomorphic symmetric 2-(64, 28, 12) designs. The remaining four 2-(28, 12, 11) designs are the first known examples of nonembeddable quasi-symmetric quasi-derived designs. These symmetric 2-(64, 28, 12) designs also produce at least 8784 nonisomorphic quasi-symmetric 2-(36, 16, 12) designs with intersection numbers 6 and 8, including the first known examples of quasi-symmetric 2-(36, 16, 12) designs with a trivial automorphism group. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 213–223, 1998  相似文献   

14.
We prove that a certain binary linear code associated with the incidence matrix of a quasi‐symmetric 2‐(37, 9, 8) design with intersection numbers 1 and 3 must be contained in an extremal doubly even self‐dual code of length 40. Using the classification of extremal doubly even self‐dual codes of length 40, we show that a quasi‐symmetric 2‐(37, 9, 8) design with intersection numbers 1 and 3 does not exist.  相似文献   

15.
16.
This paper concerns with the properties of Hadamard product of inverse M‐matrices. Structures of tridiagonal inverse M‐matrices and Hessenberg inverse M‐matrices are analysed. It is proved that the product AAT satisfies Willoughby's necessary conditions for being an inverse M‐matrix when A is an irreducible inverse M‐matrix. It is also proved that when A is either a Hessenberg inverse M‐matrix or a tridiagonal inverse M‐matrix then AAT is an inverse M‐matrix. Based on these results, the conjecture that AAT is an inverse M‐matrix when A is an inverse M‐matrix is made. Unfortunately, the conjecture is not true. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

17.
18.
All equivalence classes of Hadamard matrices of order at most 28 have been found by 1994. Order 32 is where a combinatorial explosion occurs on the number of Hadamard matrices. We find all equivalence classes of Hadamard matrices of order 32 which are of certain types. It turns out that there are exactly 13, 680, 757 Hadamard matrices of one type and 26, 369 such matrices of another type. Based on experience with the classification of Hadamard matrices of smaller order, it is expected that the number of the remaining two types of these matrices, relative to the total number of Hadamard matrices of order 32, to be insignificant. © 2009 Wiley Periodicals, Inc. J Combin Designs 18:328–336, 2010  相似文献   

19.
设G是换位子群为p阶群的有限p-群,确定了AutG的结构,证明了(i)AutG/AutGG≌Zp-1,其中AutGG={α∈AutG|α平凡地作用在G上}.(ii)AutGG/Op(AutG)≌iGL(ni,p)×jSp(2mj,p),其中Op(AutG)是AutG的最大正规p-子群,ni和mj由G惟一确定.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号