首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peculiar properties of the behavior of effective polarizability of water molecules in its saturated vapor are discussed on the basis of the experimental data on the static dielectric constant. It is taken into account that in the region 273 K < T < 485 K there is a mixture of monomers and dimers in the water vapor. The comparison of the theoretical and experimental expressions for the effective polarizability shows that the dipole moment of water dimer is connected with the dipole moment of monomer via relation: d D = √2d m. The relative value of the irreducible pair contributions to the polarizability of the dimer is determined.  相似文献   

2.
In this work, we report a theoretical study on molecular structure, vibrational spectra and nonlinear optical properties of orthoarsenic acid–tris-(hydroxymethyl)-aminomethane (OATA). The theoretical geometrical parameters in the ground state have been investigated by density functional method (B3LYP and BLYP) with 6-311G(d,p) basis set. The influence of intermolecular interactions effects on molecular properties has been considered by calculation performed on (OATA) dimer. The optimized geometric bond lengths and bond angles are in well agreement with the experimental data. As compared to theoretical frequencies of the monomer, the calculated values obtained for (OATA) dimer are in much better agreement with the experiment. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of our theoretical calculations. B3LYP method has shown better fit to experimental ones than BLYP in calculation vibrational frequencies. To investigate nonlinear optical behaviour, the electric dipole moment μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-311G(d,p) method.  相似文献   

3.
The electronic and molecular structures of the monomer and dimer of trimethylalu-minium have been studied using density functional theory and ab initio MP2 method. The optimized geometry of the monomer Al(CH3)3 is of C3h symmetry, whereas that of the dimer [A1(CH3)3]2 contains a carbon-bridged four-membered ring structure with C2h symmetry. The hydrogen-bridged six-membered ring structure is found to be unstable. The calculated dimerization energy for the four-membered ring structure is 78 kJ/mol, in close proximity to the experimental value of 85.27 kJ/mol.  相似文献   

4.
Three optimized geometries of nitromethane dimer have been obtained at the HF/6-31G level.Dimer binding energies have been corrected for the basis set superposition error (BSSE) and the zero point energy.Computed results indicate that the cyclic structure of (CH3NO2)2 is the most stable of three optimized geometries,whose corrected binding energyis 17.29 kJ mol-1 at the MP4SDTQ/6-31G//HF/6-31G level.In the optimized structures of nitromethane dimer,the inter-molecular hydrogen bond has not been found; and the charge-transfer interaction between CH3NO2 subsystems is weak; and the correlation interaction energy makes a little contribution to the intermolecular interaction energy of the dimer.  相似文献   

5.
Electronic structure of the water dimer cation   总被引:2,自引:0,他引:2  
The spectroscopic signatures of proton transfer in the water dimer cation were investigated. The six lowest electronic states were characterized along the reaction coordinate using the equation-of-motion coupled-cluster with single and double substitutions method for ionized systems. The nature of the dimer states was explained in terms of the monomer states using a qualitative molecular orbital framework. We found that proton transfer induces significant changes in the electronic spectrum, thus suggesting that time-resolved electronic femtosecond spectroscopy is an effective strategy to monitor the dynamics following ionization. The electronic spectra at vertical and proton-transferred configurations include both local excitations (features similar to those of the monomers) and charge-transfer bands. Ab initio calculations were used to test the performance of a self-interaction correction for density functional theory (DFT). The corrected DFT/BLYP method is capable of quantitatively reproducing the proper energetic ordering of the (H2O)2(+) isomers and thus is a reasonable approach for calculations of larger systems.  相似文献   

6.
Two new prototype delocalized pi[dot dot dot]pi complexes are introduced: the dimers of cyanogen, (N[triple bond]C-C[triple bond]N)(2), and diacetylene, (HC[triple bond]C-C[triple bond]CH)(2). These dimers have properties similar to larger delocalized pi...pi systems such as benzene dimer but are small enough that they can be probed in far greater detail with high accuracy electronic structure methods. Parallel-slipped and T-shaped structures of both cyanogen dimer and diacetylene dimer have been optimized with 15 different procedures. The effects of basis set size, theoretical method, counterpoise correction, and the rigid monomer approximation on the structure and energetics of each dimer have been examined. MP2 and CCSD(T) optimized geometries for all four dimer structures are reported, as well as estimates of the CCSD(T) complete basis set (CBS) interaction energy for every optimized geometry. The data reported here suggest that future optimizations of delocalized pi[dot dot dot]pi clusters should be carried out with basis sets of triple-zeta quality. Larger basis sets and the expensive counterpoise correction to the molecular geometry are not necessary. The rigid monomer approximation has very little effect on structure and energetics of these dimers and may be used without consequence. Due to a consistent cancellation of errors, optimization with the MP2 method leads to CCSD(T)/CBS interaction energies that are within 0.2 kcal mol(-1) of those for structures optimized with the CCSD(T) method. Future studies that aim to resolve structures separated by a few tenths of a kcal mol(-1) should consider the effects of optimization with the CCSD(T) method.  相似文献   

7.
The experimental and theoretical study on the structures and vibrations of 3,5-dibromosalicylic acid (DBSA) are presented. The FT-IR and FT-Raman of the title compound have been recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman activities were calculated. The energies of DBSA are obtained for all the eight conformers from density functional theory with 6-311++G(d,p) basis set calculations. From the computational results, C1 or C5 forms are identified as the most stable conformers of DBSA. The spectroscopic and theoretical results are compared with the corresponding properties for DBSA monomer and dimer of C1 (or C5) conformer. Intermolecular hydrogen bonds are discussed in dimer structure of the molecule. NBO analysis is useful to understand the intramolecular hyperconjugative interaction between lone pair O9 and C7O8. The calculated HOMO–LUMO energies reveal charge transfer occurs within the molecule. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The isotopic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the DBSA molecule, calculated using the gauge invariant atomic orbital (GIAO) method, also shows good agreement with experimental observations.  相似文献   

8.
9.
采用含时密度泛函理论方法(TDDFT)计算了IB族过渡金属及第5周期的金属杂化偶氮苯生色团的二阶非线性光学极化率。研究了金属杂化偶氮苯生色团的电子激发跃迁。结果表明, 与金属离子络合后的杂化偶氮苯生色团, 二阶非线性光学极化率明显改变, 是金属的推拉电子效应的结果。IB族金属的在原有机偶氮苯共轭体系的电荷转移方向的强拉电子效应, 增大了电荷转移范围, 使二阶非线性光学极化率增大。与Nb络合的杂化生色团, 沿原电荷转移相反的方向拉动电荷, 电荷转移跃迁局限于金属离子附近, 未能产生大的激发跃迁偶极矩, 体系的二阶非线性光学响应因而降低。激发跃迁能量是另一个主要影响因素, 同一类跃迁中, 金属杂化生色团的跃迁能量越低, 其二阶非线性光学响应就越大。络合Rh的生色团与Nb杂化生色团类似, 电荷转移跃迁范围都比较小, 同时由于Rh与羧基结合时几乎垂直羧基平面, 电荷同时沿X, Y方向转移跃迁, 属于二维电荷转移类型。  相似文献   

10.
The results are presented of three-dimensional model studies of the photodissociation of the water dimer following excitation in the first absorption band. Diabatic potential-energy surfaces are used to investigate the photodissociation following excitation of the hydrogen bond donor molecule and of the hydrogen bond acceptor molecule. In both cases, the degrees of freedom considered are the two OH-stretch modes of the molecule being excited, and the dimer stretch vibration. The diabatic potentials are based on adiabatic potential surfaces computed with the multireference configuration-interaction method, and the dynamics of dissociation was studied using the time-dependent wave-packet method. The dynamics calculations yield a donor spectrum extending over roughly the same range of frequencies as the spectrum of the water monomer computed at the same level of theory. The acceptor spectrum has the same width as the monomer spectrum, but is shifted to the blue by 0.4-0.5 eV. The dimer spectrum obtained by averaging the donor and the acceptor spectrum is broader than the monomer spectrum, with the center of the dimer first absorption band shifted to the blue by about 0.2 eV relative to the monomer band. Our reduced dimensionality calculations do not find the red tail predicted for the dimer first absorption band by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. This conclusion also holds if preexcitation of the dimer stretch vibration with one or two quanta is considered.  相似文献   

11.
Molecular orbital theory and calculations are used to describe the ultraviolet singlet excited states of NO dimer. Qualitatively, we derive and catalog the dimer states by correlating them with monomer states, and provide illustrative complete active space self-consistent field calculations. Quantitatively, we provide computational estimates of vertical transition energies and absorption intensities with multireference configuration interaction and equations-of-motion coupled-cluster methods, and examine an important avoided crossing between a Rydberg and a valence state along the intermonomer and intramonomer stretching coordinates. The calculations are challenging, due to the high density of electronic states of various types (valence and Rydberg, excimer and charge transfer) in the 6-8 eV region, and the multiconfigurational nature of the ground state. We have identified a bright charge-transfer (charge-resonance) state as responsible for the broadband seen in UV absorption experiments. We also use our results to facilitate the interpretation of UV photodissociation experiments, including the time-resolved 6 eV photodissociation experiments to be presented in the next two papers of this series.  相似文献   

12.
The structure-property characteristics of a series of newly synthesized intramolecular charge-transfer (ICT) compounds, single-branch monomer with triphenylmethane as electron donor and 2,1,3-benzothiadiazole as acceptor, the corresponding two-branch dimer and three-branch trimer, have been investigated by means of steady-state and femtosecond time-resolved stimulated emission fluorescence depletion (FS TR-SEP FD) techniques in different polar solvents. The TD-DFT calculations are further performed to explain the observed ICT properties. The interpretation of the experimental results is based on the comparative stud-ies of the series of compounds which have increased amount of identical branch moiety. The similarity of the absorption and fluorescence spectra as well as strong solvent-dependence of the spectral properties for the three compounds reveal that the excited state of the dimer and trimer are nearly the same with that of the monomer, which may localize on one branch. It is found that polar excited state emerged through multidimensional intramolecular charge transfer from the donating moiety to the acceptor upon excitation, and quickly relaxed to one branch before emission. Even so, the red-shift in the absorption and emission spectra and decreased fluorescence radiative lifetime with respect to their monomer counterpart still suggest some extent delocalization of excited state in the dimer and trimer upon excitation. The similar behavior of their excited ICT state is demonstrated by FS TR-SEP FD mea-surements, and shows that the trimer has the largest charge-separate extent in all studied three samples. Finally, steady-state excitation anisotropy measurements has further been carried out to estimate the nature of the optical excitation and the mechanism of energy redistribution among the branches, where no plateau through the ICT band suggests the intramolecular excitation transfer process between the branches in dimer and trimer.  相似文献   

13.
Polymerizations involving electron donor-acceptor interactions or charge-transfer interactions have been a topic of interest in recent years. Two classes of polymerization are the subjects of major concern in this area. One is a polymerization initiated via charge-transfer interactions involving monomers as one component, which is termed charge-transfer polymerization. The charge-transfer polymerization encompasses both thermal and photochemical processes. The other is an alternating radical copolymerization in which it is thought to be likely that a charge-transfer complex formed between monomer pairs participates as a monomer species in the propagation process of polymerization, the mechanism of which has long been a subject of controversy. Some of the alternating radical copolymerizations are initiated spontaneously via charge-transfer interactions between monomer pairs.  相似文献   

14.
By using time-dependent density functional theory, we calculated the transition energies of a zinc porphyrin monomer and its meso-meso-linked arrays. In line with the prediction of the molecular exciton model, the calculated splitting energy of the Soret band increased as the number of linked porphyrins increased. We then examined how the transition energies of the dimer array were shifted by an applied electric field. For reproduction of an electroabsorption spectrum (EA), i.e., the field-induced change in absorption intensity, a model Hamiltonian constructed from five states is proposed. It is concluded for the dimer that the field-induced coupling between the lower-energy Soret band Se and the lower-lying ionic character (charge-transfer) states is responsible for the experimentally observed blue shift of Se as well as the second-derivative profile in the EA spectrum.  相似文献   

15.
Twelve conformations of a chiral donor-acceptor (charge-transfer) dyad and six conformations of its dimer complex were structurally optimized by using the Kohn-Sham density functional theory (BLYP/TZV2P) incorporating a recently developed empirical correction scheme that uses C6/R6 potentials for van der Waals interactions (DFT-D). Subsequent time-dependent DFT calculations with BH-LYP and B3-LYP functionals (with triple-zeta basis set) were performed to obtain theoretical circular dichroism (CD) spectra. The experimental CD spectra obtained independently were properly reproduced by averaging the calculated spectra of individual conformers according to a Boltzmann population derived from single-point SCS-MP2 energies. The optical rotations of the monomer were also calculated by using the same functionals with an aug-cc-pVDZ basis set. Dielectric continuum solvation models (COSMO) applied to correct the relative energies from the isolated molecule calculations resulted in conformer distributions that piled the same or even poorer level of agreement with the experimental CD spectrum. Our results clearly show the advantage of the DFT-D method for the geometry optimization of large systems with donor-acceptor interactions and the TD-DFT/BH-LYP calculations for reproducing the experimental CD spectra. As compared with the calculated optical rotations, the wealthy information embedded in the experimental/calculated CD spectra is requisite for the configurational and/or conformational analyses of relatively large and flexible chiral organic molecules in solution.  相似文献   

16.
Infrared spectroscopy (IR) of formyl fluoride (HCOF) dimer is studied in low-temperature argon and krypton matrixes. New IR absorptions, ca. 17 cm(-1) blue shifted from the monomer C-H stretching fundamental, are assigned to the HCOF dimer. The MP2/6-311++G calculations were utilized to define structures and harmonic frequencies of various HCOF dimers. Among the four optimized structures, the dimer having two C-H...O hydrogen bonds possesses strongest intermolecular bonding. The calculated harmonic frequencies of this dimer structure are shifted from the monomer similarly as observed in the experiment. Thus, we suggest that the experimentally observed blue shifted C-H bands belong to the dimer with two C-H...O hydrogen bonds. This observation includes the HCOF dimer to the class of hydrogen bonded complexes showing blue shift in their vibrational energies.  相似文献   

17.
李晓东 《物理化学学报》2007,23(11):1792-1796
运用B3LYP方法在6-31G*基组水平上对C50富勒烯以及它的两个不同二聚物C100、C101的几何构型进行了全优化. 在优化所得构型的基础上, 采用TDB3LYP方法在3-21G*基组水平上对其激发态性质、电子吸收光谱进行了研究, 根据计算得到的态态间跃迁偶极矩和跃迁能等数据, 结合使用态求和公式进一步计算得到了它们不同光学过程中的三阶非线性极化率. 结果表明, 当C50富勒烯二聚以后, 其电子吸收光谱的最大波长吸收峰发生了明显的红移, 三阶非线性极化率有了较大的提高. 其中, [5,5]-[5,5]哑铃型二聚物C101有着比[2+2]闭环型二聚物C100更大的三阶非线性极化率.  相似文献   

18.
IntroductionOligomeric porphyrins play a number of criticalbiological roles in many processes, such as energytransfer and electron transfer, molecular binding, mul-tielectron redox catalysis and light harvest[1,2]. Amongthe arrays of covalently linked por…  相似文献   

19.
Our previously developed polarizable electrostatic model is applied to isolated N‐methylacetamide (NMA) and to three hydrogen‐bonded configurations of the NMA dimer. Two versions of the model are studied. In the first one (POL1), polarizability along the valence bonds is described by induced bond charge increments, and polarizability perpendicular to the bonds is described by cylindrically isotropic induced atomic dipoles. In the other version (POL2), the induced bond charge increments are replaced by induced atomic dipoles along the bonds. The parameterization is done by fitting to ab initio MP2/6‐31++G(d,p) electric potentials. The polarizability parameters are determined by subjecting the NMA molecule to various external electric fields. POL1 turns out to be easier to optimize than POL2. Both models reproduce well the ab initio electric potentials, molecular dipole moments, and molecular polarizability tensors of the monomer and the dimers. Nonpolarizable models are also investigated. The results show that polarization is very important for reproducing the electric potentials of the studied dimers, indicating that this is also the case in hydrogen bonding between peptide groups in proteins. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1933–1943, 2001  相似文献   

20.
The static first and second hyperpolarizabilities of a number of spiromolecules with varying degree of polarity have been calculated at the HF and MP2 level using the 6-31+G* basis set and the B3LYP/6-31+G* optimized geometry. The variation of mean second hyperpolarizability in these molecular systems has been explained in terms of the ground state dipole moment, mean linear polarizability and second-order polarizability. A number of relationships among these quantities have been derived in the framework of the sum-over-state scheme and the generalized Thomas–Kuhn sum rule. The spiroconjugation results in the significant increase of the mean polarizability. The appreciable enhancement of first hyperpolarizability due to the spiroconjugation between two dipolar monomer units has been accounted for the rather significant increase of the mean polarizability tensor and the ground state dipole moment. The relatively larger value of the average second hyperpolarizability of the spiroconjugated molecules compared to that of the corresponding monomers arises from the rather significant increase of the nonaxial component γ xxyy . The replacement of spirocarbon by spirosilicon results in the enhancement of the cubic polarizability manifold. The donor–acceptor substituted spirocompounds are predicted to be the superior third-order nonlinear optical (NLO) phores. The nature of π-conjugation in the monomer units around the spirocenter shows a strong modulation of the NLO properties of spirocompounds. The influence of electron correlation on the NLO properties at the MP2 level has been found to be rather significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号