首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intercomparison of measurements of the thermal conductivity and thermal diffusivity of two poly(methyl methacrylates) is reported. A wide variety of methods were used: temperature wave analysis, laser flash, transient plane source (Hot Disk®), transient line-source probe, and heat flux meter methods. Very good agreement of thermal conductivity results and, separately, of thermal diffusivity results was obtained. Similarly, good agreement between thermal conductivity and thermal diffusivity results, when converted using specific heat capacity and density values, was also obtained. Typically, the values were within a range of approximately ±10%. Considering the significant differences between the methods and the requirements on specimen dimensions, the level of agreement between results was considered to be good.  相似文献   

2.
The origin of size effects in the thermal conductivity and diffusivity of nanostructural semiconductors was investigated through the establishment of a unified nanothermodynamic model. The contributions of size-dependent heat capacity and cohesive energy as well as the interface scattering effects were considered during the modeling. The results indicate the following: (1) both the thermal conductivity and diffusivity decrease with decreasing nanocrystal sizes (x) of Si and Si/SiGe nanowires, Si thin films and Si/Ge(SiGe) superlattices, and GaAs/AlAs superlattices when x > 20 nm; (2) the heat transport in semiconductor nanocrystals is determined largely by the increase of the surface (interface)/volume ratio; (3) the interface scattering effect predominates in the reduction of thermal conductivity and diffusivity while the intrinsic size effects on average phonon velocity and phonon mean free path are also critical; (4) the quantum size effect plays a crucial role in the enhancement of the thermal conductivity with a decreasing x (<20 nm). These findings provide new insights into the fundamental understanding of high-performance nanostructural semiconductors toward application in optoelectronic and thermoelectric devices.  相似文献   

3.
The pressure dependence of the specific heat of poly(methyl methacrylate), polystyrene, and atactic and isotactic polypropylene was determined from simultaneous measurements of thermal conductivity and diffusivity in a cylindrical geometry at 300°K and in the pressure range 0–37 kbar. The thermal conductivity and the diffusivity both increase strongly with pressure, while the specific heat decreases. The pressure dependencies are most pronounced at low pressures. The results are compared with other experimental results and with theoretical calculations.  相似文献   

4.
A phenomenological formula has been proposed to describe the thermal conductivity of waterbased nanofluids. The formula has been derived based on available experimental data on nanofluids containing Al2O3 particles. It takes into account the dependence of the thermal conductivity coefficients of the nanofluids on both volume concentration and sizes of the particles. The formula has also been shown to describe with an accuracy of about 3% the thermal conductivity coefficients of nanofluids containing TiO2, SiO2, ZrO2, and CuO particles with sizes of 8–150 nm and volume concentrations as high as 8%.  相似文献   

5.
6.
Measurements of thermal diffusivities of peroxide-cured and sulfur-cured rubbers, over the range 0–100°C and 0–75 phr of carbon, are described. They are based on the asymptotic time dependences of heating and cooling curves, recorded following quenching of the samples into baths at various temperatures. The diffusivities are shown to depend linearly on both temperature and carbon content, to reasonable accuracies over the ranges studied. Some theory bearing on measurement techniques is presented.  相似文献   

7.
The thermal diffusivity and thermal conductivity of the zirconate, cerate and uranate of barium were investigated by employing the laser flash technique. The variation in the thermal resistivity as a function of temperature was examined and the heat transport behaviour of these materials is discussed.  相似文献   

8.
The paper describes a new transient hot wire instrument which employs 25.4 μm diameter tantalum wire with an insulating tantalum pentoxide coating. This hot-wire cell with a thin insulating layer is suitable for measurement of the thermal conductivity and the thermal diffusivity of electrically conducting and polar liquids. This instrument has been used for experimental measurement of the thermal conductivity and the thermal diffusivity of poly(acrylic acid) solution (50 mass%) in the temperature range of 299 to 368 K at atmospheric pressure. The thermal conductivity data is estimated to be accurate within ±4%. Thermal diffusivity measurements have a much higher uncertainty (±30%) and need further refinement.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - Thermal conductivity is an important thermophysical rock property, needed for heat flow determination, deep thermal regime determination, and...  相似文献   

10.
This article presents measurement of thermal diffusivity and electrical conductivity of polypyrrole films prepared by electropolymerization. Thermal diffusivity was measured by laser radiometry (former flash radiometry). Electrical conductivity was determined by a conventional four-probe method. Increase of thermal diffusivity is observed when increasing the supporting electrolyte concentration, which is also shared with the increase of electrical conductivity. Both thermal diffusivity and electrical conductivity significantly depended on the types of counter anion incorporating into polymer bulk. Thermal diffusivity of polypyrrole film is larger than that for common nonelectrical conductive polymers. Temperature profile of thermal diffusivity for as-grown polypyrrole films shows that thermal diffusivity increases with increasing temperature (first running profile), whereas remeasured temperature profile of thermal diffusivity (second or third running profiles) shows the decrease of thermal diffusivity with increasing temperature. Electrical conductivity monotonically increases until the significant decrease of it occurs at the temperature above 130°C. Investigation of these temperature profiles of thermal diffusivity and electrical conductivity has been made by corresponding to thermal analysis data. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Rayleigh light scattering results of the thermal diffusivity of methane along the critical isochore at temperatures to within 0.001 K of the critical temperature are reported. The results, corrected to zero wave vector, are compared with values from an expression introduced previously. Agreement is within 10%. Some possible reasons for this discrepancy are given.  相似文献   

12.
Titanium and its alloys are used in production of implants such as knee and hip prostheses due to their superior properties. Ti–Nb–Zr ternary alloys are preferred over other metallic implant materials due to the presence of non-toxic elements, high corrosion resistance, good biocompatibility, and proper mechanical properties. The aim of this work is to investigate the effect of zirconium addition on α → β phase transformation, microstructure, and mechanical behavior of Ti–16Nb alloy. In doing so, Ti–16Nb–xZr (x: 0, 5, 10, 15 mass%) alloys are produced by powder injection molding, which offers advantages such as low cost, net shape, and easy production of complicated parts for implant fabrication. X-ray diffraction analysis and scanning electron microscope images showed that zirconium behaves as a β stabilizer and according to differential thermal analysis, and it decreases α to β transition temperature approximately 30 °C. It is also revealed that increasing zirconium content caused finer microstructure and hardness of the alloy was raised from 336 HV0.5 to 412 HV0.5 while elastic modulus remains approximately steady between 103 and 110 GPa. It is concluded that Ti–Nb–Zr alloys have been found to be a good alternative to known metallic implant materials.  相似文献   

13.
The thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced untreated (Sample 1) and differently treated composites were measured with the transient plane source technique at room temperature and under normal pressure. All the composites were 40% oil‐palm fiber by weight. The fibers were treated with alkali (Composite 2), silane (Composite 3), and acetic acid (Composite 4) and reinforced in a phenolformaldehyde matrix. The thermal conductivity and thermal diffusivity of the composites increased after treatment to different extents. The thermal conductivity of the treated fibers as well as of the untreated fibers was calculated theoretically. The model results show that the thermal conductivity of the untreated fiber was smaller than the thermal conductivity of the treated fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 916–921, 2000  相似文献   

14.
Li transport characteristics are studied by means of density functional theory (DFT) and molecular dynamics (MD) simulations in order to investigate concentration effects on Li chemical diffusivity and conductivity in TiO(2) rutile. Our MD simulations predict one-dimensional diffusion of Li ions via jumps between the octahedral sites along the channels parallel to the c-axis. The diffusion barrier and diffusion coefficient (at room temperature) for the isolated Li, determined by means of DFT calculations, correspond to 60 meV and 9.1 × 10(-6) cm(2) s(-1), respectively. Such a small barrier suggests rapid mass transport along the channels. MD simulations are performed to evaluate the concentration dependent diffusivity profiles. The changes in Li energetics and dynamics are studied as a function of Li content, which is varied primarily between 10% and 50%. In addition, we consider a couple of compositions over 50% although this is above the intercalation limit. Our results suggest that Li diffusivity is strongly dependent on the Li?∶?TiO(2) ratio, and it decreases with increasing Li concentration. For instance, at room temperature, we find Li diffusivity for high concentrations (50% Li) to be three orders of magnitude slower than that for lower concentrations (10% Li). Our analyses on the energetics and dynamics suggest that the changes in the diffusivities originate from successive increases in the barriers with increasing concentration. The decrease in diffusivity as a function of increasing Li content is attributed to the fact that additional Li ions successively block the energetically preferred vacant sites along the channels. Our analyses also show that increasing Li concentration enhances the Li-Li repulsion within the channels, and as a result, diffusion is hindered. We also compare concentration-dependent diffusivities for Li diffusion in anatase, rutile and amorphous TiO(2). Interestingly, we find differing concentration dependence of the diffusivity in these chemically identical but structurally non-equivalent TiO(2) polymorphs. Our study suggests that these differences result from intrinsic structural characteristics of TiO(2) polymorphs, which ultimately contribute to intercalation limit, diffusivity, ionic conductivity, and the electrochemical performance in energy storage applications.  相似文献   

15.
This article demonstrates a highly accurate molecular dynamics (MD) simulation of thermal conductivity of methane using an ab initio intermolecular potential. The quantum effects of the vibrational contribution to thermal conductivity are more efficiently accounted for in the present MD model by an analytical correction term as compared to by the Monte Carlo method. The average deviations between the calculated thermal conductivity and the experimental data are 0.92% for dilute methane and 1.29% for methane at moderate densities, as compared to approximately 20% or more in existing MD calculations. The results demonstrate the importance of considering vibrational contribution to the thermal conductivity which is mainly through the self-diffusion process.  相似文献   

16.
Water vapor diffusion coefficient (WVDC) and thermal diffusivity (alpha) were determined in gelatin-starch films through photothermal techniques. The effect of different variables in the elaboration of these films, such as starch and glycerol concentrations and pH, were evaluated through the response surface methodology. The results indicated that an increase in the glycerol concentration and pH favored the WVDC of the films. On the other hand, alpha was influenced principally by the starch content and pH of the film-forming solution. The minimum alpha value was 4.5 x 10(-4) cm2/s, which is compared with alpha values reported for commercial synthetic polymers.  相似文献   

17.
Analysis of the photoacoustic signalvs. the modulation frequency allows the determination of thermal diffusivity. Computer simulations have been carried out to determine the optimal conditions, in the case of rear surface illumination, for which the thermal diffusivity is accurately measured. In accordance with these conditions, measurements were performed on a reference sample (silicon).  相似文献   

18.
The importance of reducing the time required for taking thermal conductivity measurements has increased due to the need to conserve energy. A method is described that reduces man-hours to a minimum while getting the maximum information from the measurements.The equipment uses a microprocessor to automatically scan the temperature, a data logger to make the required temperature measurements, and a computer to plot the results of the thermal conductivity values obtained. Early experiments produced values accurate to within 5%. With further refinements this can be improved to 1%.Already, the effect of curing thermosetting materials has been seen in measurements. Future applications can include tailoring materials to provide specific thermal conductivity properties and make it possible for some of the differences between a priori calculations and experiments to be better understood.  相似文献   

19.
This work presents a literature survey of the available data regarding the thermal conductivity of refrigerants. About 31 pure refrigerants that contain 7127 data points are selected for the temperature range of 91.35–580.00 K, a pressure range of (0.000111-500) bar, and thermal conductivity range of (0.007–0.27) W m?1 K?1 containing liquid, vapour, and supercritical phases. Seven binary and three ternary mixtures are also collected both in liquid and vapour phases with an overall of 803 data points. Based on the similarity between the pressure-volume-temperature and Tλ (thermal conductivity) P diagrams, the thermal conductivity model based on Heyen equation of state has been developed for pure refrigerants and their mixtures. The genetic algorithm is used to determine the adjustable parameters of the model. The calculation results prove that this proposed model can reproduce and predict thermal conductivity of refrigerants with good accuracy (overall AAD = 6.85% for pure compounds, AAD = 6.14% for binary mixtures and AAD = 9.32% for ternary mixtures).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号