首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Chemical physics》1987,115(2):151-158
A new mechanism for the rapid initial charge separation in bacterial reaction centers is investigated. It can be characterized as a combined exciton-electron transfer mechanism. It involves as first step the deactivation of the initially excited dimer (BCLPBCMP)* together with a charge transfer transition between the accessory monomer BCLA and the pheophytine BPL leading to the state BC+LABPL. This first step is followed by a rapid electron transfer from the dimer to the cation BC+LA. It is shown that this mechanism is consistent with the pertinent experimental facts from absorption and emission spectra as well as time resolved measurements related to the initial charge separation and subsequent recombination processes.  相似文献   

2.
Xenon is added to the axial channel of an argon inductively coupled plasma (ICP) at doses up to 1.5% of the aerosol gas flow. Emission is collected from the gas flowing into the sampling orifice of a mass spectrometer (MS). These Xe doses have little effect on the electron density ne or on the intensities of Fe (I) emission lines. Certain Fe (II) lines are enhanced when Xe is added, particularly those from Fe+ states that can be populated by near-resonant charge transfer between Xe and neutral Fe. Calculations based on measured values of ne indicate that Xe+ should be present at densities of up to 7 × 1014 cm−1, which should be sufficient Xe+ to drive the proposed charge transfer reactions.  相似文献   

3.
The driving force of electron transfer is one of important factors for initializing inter- and intramolecular charge separation. In this work, the main goal is to understand how driving force determines electron transfer pathway in subphthalocyanine-AzaBODIPY-C60 supramolecular triad. Experimental observations have suggested that there are only two intramolecular charge transfer states (subPC+-AzaBODIPY-C60 and subPC+-AzaBODIPY-C60) after photon absorption, where subPC is the donor. Through the calculations by using tuned long range corrected density functionals with polarizable continuum model, we find two more new intramolecular charge transfer states: subPC-AzaBODIPY+-C60 and subPC-AzaBODIPY+-C60, where AzaBODIPY is the donor. We compare the HOMO/LUMO energy of subPC, AzaBODIPY, and C60 monomers to their corresponding orbital energy in the triad. The results indicate that the driving force (HOMO/LUMO energy offsets) is not enough for electron transfer from AzaBODIPY to subPC or C60, which can explain why subPC-AzaBODIPY+-C60 and subPC-AzaBODIPY+-C60 intramolecular charge transfer states cannot be observed in the experiment. In addition, this work may provide a simple and practical method to find the intramolecular charge transport pathway of a supramolecule.  相似文献   

4.
The ultrafast back electron transfer in the excited charge transfer complexes of the methylviologen with iodide ions has been investigated using femtosecond transient absorption spectroscopy. Methylviologen and iodide form two types of charge transfer complexes each characterized by a charge transfer band in the same spectral region. At low I- concentrations mainly a 1:1 complex MV2+(I-) is present while at high I- concentrations both 1:1 and 1:2 complexes MV2+(I-)2 can be observed. Ultrashort laser pulses at 400 nm are used to excite both complexes in their charge transfer band. The observed transient absorption can be represented by a biexponential function with 1 ps and 20 ps time constants and attributed to the decay of the MV+./I. and MV+./I2 .- radical pair respectively. The excitation of the 1:1 complex leads to the formation of the MV+./I. radical pair while the excitation of the 1:2 complex leads to the formation of the MV+./I. and MV+./I2 .- radical pairs.  相似文献   

5.
The transfer of the ions Cl, Br, I, ClO4, SCN, NO3, BF4, and (C6H5)4B across the water|n-octanol (W|OC) liquid interface was studied and the standard Gibbs energies of ion transfer were determined. The ion transfer was achieved by oxidation of decamethylferrocene dissolved in a droplet of n-octanol that was attached to a graphite electrode immersed in the aqueous solutions of the respective alkali salts of the anions. The electrode reaction can be described by the equation: dmfc(OC)+X(W)⇄dmfc+(OC)+X(OC)+e, where X is the transferred anion. Square-wave voltammetry at this three-phase arrangement was utilised to determine the formal potential of the decamethylferrocene/decamethylferrocenium (dmfc/dmfc+) couple under the condition of ion transfer across the water|n-octanol interface. For calibration the standard Gibbs energies of ion transfer have been extrapolated to octanol from the series of known data for methanol, ethanol, n-propanol, and n-butanol. All these data are consistent and the experimental dependence of the formal potentials on the standard Gibbs energies is as predicted by theory. The validity of data is further supported by calculations of Gibbs energies of ion transfer using the Born theory. Until now it was not possible to perform electrochemical measurements at the water|n-octanol interface because in the conventional four-electrode cells this interface cannot be polarised. With the new method it is now for the first time possible to determine the Gibbs energies of transfer of ions across the water|n-octanol interface. These values are of very wide use for assessing the lipophilicity of compounds in chemistry, medicine, and pharmacology.  相似文献   

6.
Using mass spectrometric detection of positive and negative ions, we have investigated ionizing reactions of Ne(ns,nd) Rydberg atoms, efficiently excited by resonant two-photon excitation of metastable Ne(3s 3 P 2) atoms, with electron attaching moleculesBC (BC=SF6, CCl4, CS2, O2) at thermal collision energies. Absolute rate constants have been determined in the range of low and intermediate principal quantum numbersn(5≦n?30) by utilizing the photoionization signal caused by room temperature black-body radiation and the loss of Ne(3s 3 P 2) atoms, associated with the laser excitation. Substantially differentn-dependences of the electron transfer cross section have been found for the larger molecules (BC = SF6, CCl4) and the smaller molecules (BC = CS2, O2). Simple model calculations have been performed to gain new insight into the dynamics of the electron transfer process; forBC = SF6, our results at lown(5 ≦n ≦ 10) suggest that internal energy conversion in the Coulombic complex Ne+ — SF 6 ? is important for the formation of the detected ions.  相似文献   

7.
The properties of the ion associates of benzophenone (BP) free radicals with Na+ and Li+ have been investigated polarographically in dimethylformamide. It was found that BP? forms ion pairs with Na+ (Kass=69 M?1) and two types of associates with Li+: BP?...Li+ (Kass,1=330 M?1) and BP?...(Li+)2(Kass,2M?2). The influence of temperature on the equilibria was also discussed. The ion associates with Li+ disappear in a disproportionation reaction; the mechanism and kinetics of that reaction were studied. It was found that the main contribution to the overall kinetics are made by the pairs (a) BP?...Li++BP?...Li+, (b) BP?+BP?...(Li+)2 (c) BP?...Li++BP?...(Li+)2.  相似文献   

8.
The polarographic reduction of nitrate ion in the presence of zirconium(IV) is studied by dc and phase-selective ac polarography. The total reduction process was proved by means of controlled-potential electrolysis and chemical analysis to conform to NO3+8H+6e→NH2OHH+=2 H2O. Using a measurement of differential capacity, a large part of the difference between the reduction transfer to the vicinity of the electrode but to a charge transfer step and/or a chemical reaction step. The zirconium(IV) is concluded to act as an intermediary for the charge transfer from the electrode to the nitrate ion.  相似文献   

9.
Reaction and charge transfer of H+2 + Ar to give ArH+ and Ar+ have been investigated as a function of H+2 vibrational quantum state and kinetic energy (Ec.m.), using photoionization and guided beam ion optics. Resonance effects are important in charge transfer; proton and charge transfer are closely coupled for Ec.m. 3 eV.  相似文献   

10.
Pulsed laser excitation (354.7 nm, 10 ns pulse) of a pyridyltritolylporphyrin chromophore covalently linked to a dibenzylviologen, Bz2V2+, electron acceptor (porphyrin—viologen, PV2+) in CH3CN leads to intramolecular electron transfer quenching of the porphyrin singlet excited state within the laser pulsewidth to reduce the linked Bz2V2+ to Bz2V. Transient Bz2V can be detected directly by resonance Raman spectroscopy. The same transient features are obtained from pulsed laser excitation of a mixture of porphyrin (P) and dibenzylviologen in CH3CN where Bz2V2+ quenches the porphyrin fluorescence, establishing bimolecular excited state electron transfer quenching to yield Bz2V. Confirmation of our assignment of the transient Bz2V comes from comparison of the spectra with the resonance Raman spectrum of an authentic sample of Bz2V, and of electrochemically reduced PV2+ which has been spectroscopically confirmed to form PV. Fluorescence lifetime determinations for PV2+ and P yield a rate constant for intramolecular electron transfer, ket = 8 × 107 s−1, consistent with the ability to observe electron transfer within the laser pulsewidth  相似文献   

11.
Energy spectra and angular distributions of the O+ and O 2 + product ions resulting from the He+-O2 charge transfer reaction have been measured in the collision energy range 0.5–200 eV using the crossed-beam method. The O 2 + ions represent only a minor fraction of the reaction products (0.2–0.6% over the energy range measured). In the dissociative charge transfer reaction, four main processes are identified leading to O+O+ reaction products in different electronic states. Two different mechanisms can be distinguished, each being responsible for two of the observed processes:(i) a long-distance energy-resonant charge transfer process involving thec 4 u ? (v′=0) state of O 2 + and(ii) a slightly exothermic charge transfer process via the (III)2 u state of O 2 + (with the exothermicity depending on the collision energy). Angle-integrated branching ratios and partial cross sections (in absolute units) have been determined. The branching ratios of the individual processes show a pronounced dependence on the collision energy. At low energies, the O+ product ions are preferentially formed in the2 P 0 and2 D 0 excited states. The angular distributions of the O+ product ions show an anisotropic behaviour indicating an orientation-dependent charge transfer probability in the He+ ?O2 reaction.  相似文献   

12.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

13.
《Tetrahedron: Asymmetry》2005,16(21):3512-3519
Stereoselective reductions of prochiral ketones were performed using a new thermophilic, NAD-dependent alcohol dehydrogenase from Thermus sp. (TADH). The enzyme was produced on 2L-scale from recombinant Escherichia coli and purified by a simple, one-step heat treatment procedure yielding 220 mg of pure enzyme. Regeneration of NADH was catalyzed by the organometallic complex [Cp*Rh(bpy)(H2O)]2+ using formate as a reducing agent. The catalytic performance of [Cp*Rh(bpy)(H2O)]2+ in terms of total number of catalytic cycles and number of catalytic cycles per hour achieved herein (up to 1500 and more than 400 h−1, respectively), are the highest reported for a non-enzymatic nicotinamide regeneration system so far. Chemoenzymatic reduction reactions in a two liquid phase setup were performed on a gramme-scale, for example, 1.3 g of enantiopure (1S,3S)-3-methylcyclohexanol was obtained after purification. The volumetric productivity reached up to 3.9 mM h−1 with an average of 2.6 mM h−1 (5.3 g L−1 d−1) over 10 h. In addition, chemoenzymatic oxidations utilizing the same catalyst set and molecular oxygen as a terminal electron acceptor were performed. Thus, the preparative value of chemoenzymatic transfer hydrogenations with [Cp*Rh(bpy)(H2O)]2+ as a regeneration catalyst coupled especially to thermophilic ADHs was demonstrated.  相似文献   

14.
A novel supersonic beam of ground‐state boron atoms [B(2P)] was employed to investigate the reaction of B(2P) with acetylene [C2H2(1Σg+)] at an average collision energy of 16.3±0.4 kJ mol?1 at the most fundamental microscopic level. The crossed molecular beam technique was used to record time of flight spectra at mass to charge ratios of 36 (11BC2H+), 35 (10BC2H+/11BC2+), and 34 (10BC2+) at different laboratory angles. Forward‐convolution fitting of the laboratory data showed that only a product with the gross formula BC2H was formed via a boron versus hydrogen exchange. By combining experimental results with electronic structure calculations, the conclusion was that the reaction proceeded via the initial addition of B(2P) to the two carbon atoms of acetylene, leading to the formation of a first intermediate, the borirene radical (c‐BC2H2). This intermediate underwent various isomerization processes on the BC2H2 potential energy surface before decomposing into the linear HBCC(X1Σ) isomer via a hydrogen atom elimination. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1359–1365, 2001  相似文献   

15.
《Mendeleev Communications》2023,33(2):212-214
Using the example of a series of sulfo derivatives of 2-naphthol, it was shown that the charge field formed by the polyelectrolyte coil significantly changes the constants k1 and k−1 of the photoinduced proton transfer reaction, but no noticeable shift in the equilibrium constant K * was found. This observation is fundamentally different from the behavior of these substances in micellar media, where K * increases by an order of magnitude. The binding constants of the dyes with the cationic polyelectrolyte were also determined.  相似文献   

16.
In this study, the seGVB method was implemented for the N H bonding system, specifically for hydrogen‐bonded ammonia complexes, and the model well reproduces the MP2 geometries and energetics. A comparison between the ammonia dimer and water dimer is given from the viewpoint of valance‐bond structures in terms of the calculated bond energies and pair–pair interactions. The linear hydrogen bond is found to be stronger than the bent bonds in both cases, with the difference in energy between the linear and cyclic structures being comparable in both cases although the NH bonds are generally weaker. The energy decomposition clearly demonstrates that the changes in electronic energy are quite different in the two cases due to the presence of an additional lone pair on the water molecule, and it is this effect which leads to the net stabilization of the cyclic structure for the ammonia dimer. Proton‐transfer profiles for hydrogen‐bonded ammonia complexes [NH2 H NH2] and [NH3 H NH3]+ were calculated. The barrier for proton transfer in [NH3 H NH3]+ is larger than that in [NH2 H NH2], but smaller than that in the protonated water dimer. The different bonding structures substantially affect the barrier to proton transfer, even though they are isoelectronic systems. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 357–367, 1999  相似文献   

17.
《Chemical physics letters》1986,127(4):354-359
The results of ab initio SCF and CI calculations on the electronic states of NiCO are reported. The 1Σ+ ground state is a mixture of two primary configurations associated with the Ni 3d10 and 3d94s states, and is bound by 18 kcal mol−1 with respect to Ni and CO at rnic =1.77 Å. The excited states (within 22000 cm−1 of the ground state) can be divided into a lower manifold, principally involving the Ni(3d94s) electronic configuration, and a higher manifold, formally associated with the charge transfer configuration Ni+ (3d9)CO (π1).  相似文献   

18.
The acid dissociation constants of a wide range of acids in water+acetone mixtures have been combined with values for the free energy of transfer of the proton. ΔG0t(H+ to calculate values for the free energy of transfer of ions which derive only from the charge on the ion. ΔG0t(i)c. As the values of ΔG0t(H+) have been revised, revised values for the total free energies of transfer of cations and anions, ΔG0t(M+) and ΔGot(X-), are given. New data for ΔGot(MXn) is also split into values for ΔG0t(Mn+) (where n=1 and 2) and ΔG0t(X?). These free energies of transfer, both total and those deriving from the charge alone, are compared with similar free energies in other mixtures water+co-solvent. Values for ΔGot(i)c do not conform to a Born-type relationship and show the importance of structural effects in the solvent even when only the transfer of the charge is involved.  相似文献   

19.
The mechanism has been investigated by cyclic voltammetry for the ion transfer from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) in the presence of a typical uncoupler, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP). Voltammograms for the ion transfer were in steady-state and showed rotated sigmoidal and symmetrical shape about the origin (0 V, 0 A). The magnitude of the ion transfer current at a given applied potential increased linearly with the concentration of FCCP in W2 up to 10−6 M and then became saturated. The ion transfer current also showed a bell-type dependence on pH centered around pH  pKa + 1, Ka being the dissociation constant of FCCP in aqueous phase. These properties have been well explained by our proposed model that the ion transfer current is attributable to the transfers of H+ and Na+ distributed in BLM. The hydrophilic counter ions, H+ and Na+, compensate the negative charge of the dissociated FCCP in BLM. The current intensity is predominantly governed by the concentration and the ion mobility of the counter cations.  相似文献   

20.
Elastic as well as charge transfer collisions of H++Xe have been investigated in a crossed beam experiment atE CM ≈30 and 50 eV. Opposite-phase oscillations have been observed in the elastic differential cross section with respect to the charge transfer differential cross section for the formation of Xe+(2 P 1/2). Taking advantage of the asymptotic quasi-degeneracy of the channels in question, this behavior has been qualitatively interpreted in terms of a simplified two-curve crossing model. The conditions of the validity of the model are discussed and its relation to the potential symmetry scattering in homonuclear systems is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号