首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.  相似文献   

2.
The reactions F + H2 → HF + H, HF → H + F, F → F+ + e? and F + e? → F? were used as simple test cases to assess the additivity of basis set effects on reaction energetics computed at the MP4 level. The 6-31G and 6-311G basis sets were augmented with 1, 2, and 3 sets of polarization functions, higher angular momentum polarization functions, and diffuse functions (27 basis sets from 6-31Gd, p) to 6-31 ++ G(3df, 3pd) and likewise for the 6-311G series). For both series substantial nonadditivity was found between diffuse functions on the heavy atom and multiple polarization functions (e.g., 6-31 + G(3d, 3p) vs. 6-31 + G(d, p) and 6-31G(3d, 3p)). For the 6-311G series there is an extra nonadditivity between d functions on hydrogen and multiple polarization functions. Provided that these interactions are taken into account, the remaining basis set effects are additive to within ±0.5 kcal/mol for the reactions considered. Large basis set MP4 calculations can also be estimated to within ±0.5 kcal/mol using MP2 calculations, est. EMP4(6-31 ++ G(3df, 3pd)) ≈ EMP4(6-31G(d, p)) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31G(d, p)) or EMP4(6-31 + G(d, p) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31 + G(d, p)) and likewise for the 6-311G series.  相似文献   

3.
4.
A thermodynamic approach based on both the classical Flory-Huggins (FH) formalism and the association equilibria (AE) theory has been developed to study the solubility properties of a system formed by a proton-donor solvent (A), a proton-acceptor solvent (B) and a proton-acceptor polymer (C). The miscibility of this ternary system is attained by competitive specific interactions via hydrogen-bonding established between the hydroxyl and carbonyl interacting groups of either solvent-solvent (AB) or solvent-polymer (AC) system components. The binary AB and AC specific interactions and their dependence with the system composition as well as with the extent of the association equilibrium have been quantified by means of two new parameters, ΔgAB and ΔgAC. These excess functions have appeared to be equivalent to the combinatorial or entropic term of the Gibbs free energy of the complex formation process, which accounts for the entropy of mixing plus the intermolecular specific interactions. The theoretical predictions have reasonablely agreed with experimental data on preferential solvation of two systems taken from literature: methanol(A)/1,4-dioxane(B)/poly(alkyl methacrylate)(C) and n-alcohol(A)/heptan-3-one(B)/poly(vinyl pyrrolidone)(C).  相似文献   

5.
A recent theory for intermolecular interactions is modified by the exclusion of a “self-exchange” contribution and the inclusion of dispersive inte  相似文献   

6.
7.
The well-known cationic surfactant hexadecyltrimethylammonium bromide (CTAB) was used as a model carrier to study drug-carrier interactions with fluorescence probes (5-hexadecanoylaminofluorescein (HAF) and 2,10-bis-(3-aminopropyloxy)dibenzo[a,j]perylene-8,16-dione (NIR 628) by applying ensemble as well as single molecule fluorescence techniques. The impact of the probes on the micelle parameters (critical micelle concentration, average aggregation number, hydrodynamic radius) was investigated under physiological conditions. In the presence of additional electrolytes, such as buffer, the critical micelle concentration decreased by a factor of about 10. In contrast, no influence of the probes on the critical micelle concentration and on average aggregation number was observed. The results show that HAF does not affect the characteristics of CTAB micelles. Analyzing fluorescence correlation spectroscopy data and time-resolved anisotropy decays in terms of the "two-step" in combination with the "wobbling-in-cone" model, it was proven that HAF and NIR 628 are differently associated with the micelles. Based on ensemble and single molecule fluorescence experiments, intra- and intermicellar energy transfer process between the two dyes were probed and characterized.  相似文献   

8.
The adiabatic potential energy surfaces (PES ) which are most likely to be involved in the elementary mechanism presiding over charge-exchange and direct inelastic collisions between O2 molecules and collimated beams of protons are discussed. The general behavior of Diatomics-in-molecule (DIM ) model interactions is analyzed in great detail as a function of the molecular vibrational coordinate and of the other internal nuclear coordinates. The general features of the lower two PES are discussed, and the corresponding nonadiabatic coupling terms between these surfaces are also computed and analyzed. These model results turn out to provide very useful indications on the specific dynamical features that are to be considered responsible for the inelastic, vibronic transitions observed in the target molecule during collisional experiments.  相似文献   

9.
高能体系分子间相互作用研究: 含NNO~2和NH~2混合物   总被引:6,自引:2,他引:6  
以abinitioHF/6-31G^*计算求得NH~3+NH~2NO~2的两种优化构型,经MP4电子相关能校正和Boys-Bernardi方案校正基组叠加误差求得精确的分子间相互作用能。还用PM3方法计算研究TATB(均三氨基三硝基苯)分别与HMX(奥克托金)和RDX(黑索金)的混合体系,经色散能校正电子相关近似地求得分子间相互作用能。结果表明,NH~3与NH~2NO~2之间的最大结合能为-38.32kJ/mol;分子间相互作用增强了N-NO~2键强度;TATB与HMX,RDX的结合能远大于石墨与HMX或RDX的结合能,表明TATB对HMX和RDX的润湿和钝感作用较石墨更强。  相似文献   

10.
A London-type formula is derived for endohedral systems. It involves the static dipole polarisability, alpha(1)(A) of the inner system, A, and a new type of dipole polarisability, alpha(-2)(B) with an r(-2) radial operator, for the outer system, B. The new formula has no explicit dependence on the radius, R, of B. The predicted interaction energies are compared against MP2 supermolecular calculations for A@C(60), A = He-Xe, Zn, Cd, Hg, and CH(4).  相似文献   

11.
12.
Various organometallic biological systems are studied by mean of resonance Raman spectroscopy and Raman micro—spectroscopy.Different interaction modes are illustrated with metalloporphyrins, metallocorrins as well as with organo metallic complexes found in cancerous tissues.  相似文献   

13.
[Chemical structure: see text] This paper describes the behavior of some polysaccharides with well-known chemical structures and in which the influence of cooperative secondary interactions play an important role. The roles played by hydrophobic and ionic interactions (including ionic selectivity) on polysaccharide conformation and gelation are discussed. Electrostatic attractions are also important in the complexes formed between surfactants and polyelectrolytes of opposite charge. Finally, van der Waals dipolar interactions and particularly hydrogen-bond formation are examined. The role of hydrogen bonds in solubility, conformation, and especially the local stiffness of polysaccharides, but also in polymer-polymer complexes frequently obtained with polysaccharides, is developed. Repeat unit for a number polysaccharides.  相似文献   

14.
The interactions of simple carbohydrates with aromatic moieties have been investigated experimentally by NMR spectroscopy. The analysis of the changes in the chemical shifts of the sugar proton signals induced upon addition of aromatic entities has been interpreted in terms of interaction geometries. Phenol and aromatic amino acids (phenylalanine, tyrosine, tryptophan) have been used. The observed sugar-aromatic interactions depend on the chemical nature of the sugar, and thus on the stereochemistries of the different carbon atoms, and also on the solvent. A preliminary study of the solvation state of a model monosaccharide (methyl beta-galactopyranoside) in aqueous solution, both alone and in the presence of benzene and phenol, has also been carried out by monitoring of intermolecular homonuclear solvent-sugar and aromatic-sugar NOEs. These experimental results have been compared with those obtained by density functional theory methods and molecular mechanics calculations.  相似文献   

15.
A combinatorial approach was applied to devise a set of reference Si–C–O–H species that is used to derive group-additivity values (GAVs) for this class of molecules. The reference species include 62 stable single-bonded, 19 cyclic, and nine double-bonded Si–C–O–H species. The thermochemistry of these reference species, that is, the standard enthalpy of formation, entropy, and heat capacities covering the temperature range from 298 to 2000 K was obtained from quantum chemical calculations using several composite methods, including G4, G4MP2, and CBSQB3, and the isodesmic reaction approach. To calculate the GAVs from the ab initio based thermochemistry of the compounds in the training set, a multivariable linear regression analysis is performed. The sensitivity of GAVs to the different composite methods is discussed, and thermodynamics properties calculated via group additivity are compared with available ab initio calculated values from the literature.  相似文献   

16.
The coefficients of a 1/R expansion (containing long-range electrostatic interaction, medium-range electrostatic-induced dipole attraction, short-range dispersive attraction, and very short overlap interaction terms) have been determined, within a semiempirical approach, from the results of a priori calculations. The formulation has been applied to the study of the stable conformations of benzene complexes.  相似文献   

17.
We have studied the additivity of the anion-pi interaction using high level ab initio calculations. We have optimized chloride and bromide complexes with one, two and three aromatic units (such as trifluoro-s-triazine and s-triazine). We have analyzed the interaction using the atoms in molecules theory and studied the charge transfer using several methods for deriving atomic charges. The results revealed additivities of both the geometries and the binding energies. We have also proposed a neutral receptor for chloride based on multiple anion-pi interactions. Finally, we have simulated solvent effects within the self-consistent reaction field model.  相似文献   

18.
π–π and CH···N interactions are vital in biological systems. In this study, stacking and hydrogen-bonded interactions in pyrazine and triazine dimers were investigated by density functional theory combined with symmetry-adapted perturbation theory (DFT-SAPT) and counterpoise (CP)-corrected supermolecular MP2, SCS-MP2, B3LYP-D and CCSD(T) calculations. All interaction energies were computed using the optimized structures at the CP-corrected SCS/aug-cc-pVDZ level, which gave 1–2 kJ/mol lower interaction energies than the ones computed at the MP2 level. For both dimers, doubly hydrogen-bonded and cross-(displaced) stacked orientations were found to be the lowest energy ones. The reference CCSD(T) calculations favored the former structure in both dimer systems, whereas MP2 and SCS-MP2 located the latter as the lowest energy isomer. In particular, the former was found to be lower in energy than the latter by 2.28 and 1.01 kJ/mol at the CCSD(T)/aug-cc-pVDZ level for pyrazine and triazine, respectively. B3LYP-D produced interaction energies in agreement with the CCSD(T) at the equilibrium geometries, but it overestimates them at the short range and underestimates at the long intermonomer separations. Furthermore, it tends to give smaller equilibrium distances compared to the CCSD(T). DFT-SAPT method was in a good agreement with the reference CCSD(T) calculations. This suggests that DFT-SAPT can be employed to compute the full potential energy surface of these dimers. Moreover, DFT-SAPT calculations showed that the electrostatic and dispersion contributions are the most important energy components stabilizing these dimers. The present study aims to show which theoretical method is the most promising one for the investigation of intermolecular interactions dominated by π–π and CH···N. Therefore, the findings obtained in this study can be used to unravel the structures of nucleic acid bases and other systems stabilized by π–π and CH···N interactions.  相似文献   

19.
Studied here are miscible binary cosolvents for polystyrene, for which polystyrene is insoluble in either of the individual solvents. Polymer-solvent interactions in solutions of atactic polystyrene in acetone/diethyl ether and in methylcyclopentane (MCP)/acetone binary cosolvents have been investigated using nuclear magnetic resonance (NMR) spectroscopy. Polystyrene 13C chemical shifts were measured as a function of miscible binary solvent compositions and temperature. The NMR data were used to calculate “association constants” as a measure of specific interactions of the solvent components with all sites on the polymer. In mixtures of acetone and diethyl ether, 13C-NMR indicates a weak interaction between the polystyrene phenyl ring and the diethylether solvent component. In the polystyrene/MCP/acetone system, present NMR data reveal no preferential interactions. Additional NMR measurements were performed on polystyrene in mixtures of CCl4/acetone. From these results, it is concluded that although preferential polymer-solvent interactions are present in some cosolvent systems, they are not a prerequisite for such behavior.  相似文献   

20.
We investigate effective interactions between a colloidal particle, immersed in a binary mixture of smaller spheres, and a semipermeable membrane. The colloid is modeled as a big hard sphere, and the membrane is represented as an infinitely thin surface, which is fully permeable to one of the smaller spheres and impermeable to the other one. Within the framework of the density functional theory, we evaluate depletion potentials and we consider two different approximate theories: the simple Asakura-Oosawa approximation and the accurate White-Bear version of the fundamental measure theory. The effective potentials are compared with the corresponding potentials for the hard, nonpermeable wall. Using statistical-mechanical sum rules, we argue that the contact value of the depletion potential between a colloid and a semipermeable membrane is smaller in magnitude than the potential between a colloid and a hard wall. A heuristic argument is provided that the colloid-semipermeable membrane effective interactions are generally weaker than these near a hard nonpermeable wall. These predictions are confirmed by explicit calculations, and the effect is more pronounced for smaller osmotic pressures. The depletion potential for a colloidal particle inside a semipermeable vesicle is stronger than the potential for the colloidal particle located outside of a vesicle. We find that the asymptotic decay of the depletion potential for the semipermeable membrane is similar to that for the nonpermeable wall and reflects the asymptotics of the total correlation function of the corresponding binary mixture of smaller spheres. Our results demonstrate that the ability of the membrane to change its shape as well as specific interactions constitute an important factor in determining the effective interactions between the semipermeable membrane and the colloidal macroparticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号