首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Chemical physics letters》1988,151(6):516-519
The CO2-laser-induced IRMPD of CHClF2/Br2 mixtures produced CBr2F2 as a main product, which was considerably enriched with 13C under selected irradiation conditions. Further IRMPD of CBr2F2 in the presence of O2 gave CF2O at a 13C-atom fraction as high as 86%. The CF2O was converted to 13#C-enriched CO2 via hydrolysis.  相似文献   

2.
Laser-flash photolysis of RBr/O3/SF6/He mixtures at 248 nm has been coupled with BrO detection by time-resolved UV absorption spectroscopy to measure BrO product yields from O(1D) reactions with HBr, CF3Br, CH3Br, CF2ClBr, and CF2HBr at 298±3 K. The measured yields are: HBr, 0.20±0.04; CF3Br, 0.49±0.07; CH3Br, 0.44±0.05; CF2ClBr, 0.31±0.06; and CF2HBr, 0.39±0.07 (uncertainties are 2σ and include estimates of both random and systematic errors). The results are discussed in light of other available information or O(1D)+RBr reactions. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 555–563, 1998  相似文献   

3.
《Chemical physics letters》1987,141(5):423-427
Tunable diode laser transient detection of CF2 C2F4, and HCl following infrared multiphoton dissociation (IRMPD) of CF2HCl has been achieved. Quantification of the HCl and C2F4 leads to the calculation of an infrared absorption linestrength and the ν1 bandstrength for CF2 (X̃1A1). In addition, the rate coefficient for recombination of CF2 was found to be (1.4± 0.4) × 1010 cm3 mol−1 s−1.  相似文献   

4.
The infrared absorptions associated with the two CF stretching fundamentals of CF2Cl+ and CF2Br+ have been identified in studies of the matrix-isolated products of the interaction of excited argon atoms with CF2Cl2, CF2ClBr, and CF2Br2. The exceptionally high values of the CF stretching frequencies obtained in these experiments are consistent with the implications of previous experimental and theoretical studies.  相似文献   

5.
The double ionization energies of the perhalomethanes CF3Br, CF2Br2, CFBr3 and CF2ClBr have been determined using the technique of double-charge-transfer spectroscopy. The values found are compared with those of other perhalomethane molecules also determined in this laboratory.  相似文献   

6.
The infrared multiple-photon decomposition of mixtures of C2F6 and Br2 has been examined as functions of various experimental parameters. Carbon-13 was found to be enriched in the main product CF3Br; the maximum enrichment factor was 35. The combination of this process with the IRMPD of CF3Br provides a closed chemical cycle for efficient carbon isotope separation  相似文献   

7.
The NMR Spectra of CF3I, CF3IF2, and CF3IF4 The 19F-NMR and 13C-NMR spectra of CF3I, CF3IF2 and CF3IF4 were recorded in acetonitrile solution. The chemical shifts of the CF3-groups are strongly dependent on the oxidation state of the iodine atom. With increasing oxidation state the resonances of the CF3-groups in the 19F-NMR spectra are characteristically shifted to high field, whereas in the 13C-NMR spectra a characteristic shift to low field is measured. The absolute value of the coupling constants 1J(19F? 13C) increases with increasing oxidation state from 344 Hz (CF3I) via 354 Hz (CF3IF2) to 359 Hz (CF3IF4).  相似文献   

8.
The feasibility of obtaining highly enriched (13C & 80%) carbon-13 by isotope-selective IR multiphoton dissociation (MPD) of Freon 22 (CF2HCl) molecules in one- and two-stage modes of the process in an apparatus with the intracavity arrangement of the separation reactor, which resembled current technological facilities in its basic characteristics, was studied. The one-stage separation scheme was realized using the selective MPD of Freon 22 by which13C is concentrated in the dissociation product tetrafluoroethylene (C2F4). Carbon-13 concentrations in the product and MPD yields were measured depending on the laser radiation frequency and Freon 22 and bath gas (nitrogen) pressure. At the chosen irradiation geometry and a laser pulse repetition rate of 30 Hz,13C concentrations of 83 and 89% in the final product with the production rate of ∼36 and ∼7 mg13C/h were attained. The two-stage separation scheme was furnished on the basis of isotopically selective dissociation of the intermediate product CF2HI enriched in13C by its buildup process upon irradiation of a CF2HCl mixture with HI. The final product in this case was CF2H2 having a13C concentration of 98 ± 1.5%. The production rate of the two-stage laser separation process was ∼22 mg13C/h.  相似文献   

9.
Isotope-selective IR multiphoton dissociation of CF2C12 molecules in a mixture with HI was experimentally investigated. It was shown that irradiation of the CF2C12-HI mixture leads to the successive buildup of the intermediates CF2HC1 and CF2HI, which also isotopically selectively dissociate simultaneously with the substrate to yield the final product CF2H2 enriched in13C up to 97% at an initial13C concentration of 1.1% in CF2C12. When CF2C12 preliminarily enriched in13C up to 12.3% was used, the attained13C concentration in CF2H2 was as high as ≥99%. Isotopic selectivity and dissociation yields of13C- and12C-containing components of the substrate CF2C12 and both intermediate dissociation products, CF2HC1 and CF2HI, were measured, depending on experimental conditions. The13C distribution over the intermediate and final dissociation products was studied. The side products C2F4C12 and CF2IC1 were detected.  相似文献   

10.
Chemically activated CF3SH, CFCl2SH, and CF2ClSH were formed through combination of SH and CF3, CFCl2, and CF2Cl radicals, respectively. The SH radical was prepared by abstraction of an H‐atom from H2S by the halocarbon radical produced during photolysis of (CF3)2C=O, (CFCl2)2C=O, or (CF2Cl)2C=O. 1,2‐HX (X = F, Cl) elimination reactions were observed from CF3SH, CFCl2SH, and CF2ClSH with products detected by GC‐MS. The combination reaction of CF2Cl radicals with SH radicals prepared CF2ClSH molecules with approximately 318 kJ/mol of internal energy. The experimental rate constants for elimination of HCl and HF from CF2ClSH were 3 ± 3 × 1010 and 2 ± 1 × 109 s?1, respectively. Comparison to Rice–Ramsperger–Kassel–Marcus (RRKM) calculated rate constants assigned the threshold energies as 171 ± 12 and 205 ± 12 kJ/mol for the unimolecular elimination of HCl and HF, respectively. Theoretical calculations using the B3PW91, MP2, and M062X methods with the 6311+G(2d,p) and 6‐31G(d',p') basis sets established that for a specific method the threshold energies differ by only 4 kJ/mol between the two different basis sets. There was wide variation among the three methods, but the M062X approach appeared to give threshold energies closest to the experimental values. Chemically activated CF3SH and CFCl2SH were also prepared with about 318 kcal mol?1 of internal energy, and the HX (X = F, Cl) elimination reactions were observed. Only HCl loss was detected from CFCl2SH, but the rate was too fast to measure with our kinetic method; however, based on our detection limit the HF elimination channel is at least 50 times slower.  相似文献   

11.
Perfluorosalkyl Tellurium Compounds: Oxidation of (CF3)2Te; Preparations and Properties of (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2Te(ONO2)2, and (CF3)2TeO From the oxidation of (CF3)2Te with Cl2, Br2, O2, and ClONO2 the new trifluoromethyl tellurium compounds (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2TeO, and (CF3)2Te(ONO2)2 are prepared. The 19F, 13C and 125Te n.m.r. spectra, the vibrational and mass spectra as well as the chemical properties of these compounds are described. By variation of the reaction conditions CF3TeCl3 and CF3TeBr3 are also formed. It has not been possible to isolate (CF3)2TeI2, but there is some evidence that it is formed as an intermediate. (CF3)2Te reacts with ozone to a very unstable compound, which decomposes at low temperature.  相似文献   

12.
Dissociation of nitromethane has been observed when a mixture of CF2HCl and CH3NO2 is irradiated using pulsed TEA CO2 laser at 9R (24) line (1081 cm-1), which is strongly absorbed by CF2HCl but not by CH3NO2. Under low laser fluence conditions, only nitromethane dissociates, whereas at high fluence CF2HCl also undergoes dissociation, showing that dissociation occurs via the vibrational energy transfer processes from the TEA CO2 laser-excited CF2HCl to CH3NO2. Time-resolved infrared fluorescence from vibrationally excited CF2HCl and CH3NO2 molecules as well as UV absorption of CF2 radicals are carried out to elucidate the dynamics of excitation/dissociation and the chemical reactions of the dissociation products.  相似文献   

13.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

16.
The recombination of CF2Cl with CH2Cl and CFCl2 with CH2F were employed to generate CF2ClCH2Cl* and CFCl2CH2F* molecules with 381 and 368 kJ mol?1, respectively, of vibrational energy in a room‐temperature bath gas. The unimolecular reactions of these molecules, which include HCl elimination, HF elimination, and isomerisation by interchange of chlorine and fluorine atoms, were characterized. The three rate constants for CFCl2CH2F were 2.9×107, 0.87×107 and 0.04×107 s?1 for HCl elimination, isomerisation and HF elimination, respectively. The isomerisation reaction must be included to have a complete characterization of the unimolecular kinetics of CFCl2CH2F. The rate constants for HCl elimination and HF elimination from CF2ClCH2Cl were 14×107and 0.37×107 s?1, respectively. Isomerisation that has a rate constant less than 0.08×107 s?1 is not important. These experimental rate constants were matched to calculated statistical rate constants to assign threshold energies, which are 264, 268, and 297 kJ mol?1, respectively, for isomerisation, HCl elimination, and HF elimination for CFCl2CH2F and 314, 251, and 289 kJ mol?1 in the same order for CF2ClCH2Cl. Density functional theory was used to evaluate the models that were needed for the statistical rate constants; the computational method was B3PW91/6‐31G(d′,p′). Threshold energies for the unimolecular reactions of CF2ClCH2Cl and CFCl2CH2F are compared to those for CF2ClCH3 and CFCl2CH3 to illustrate the elevation of threshold energies by F‐ or Cl‐atom substitution at the beta carbon atom (identified by CH). The DFT calculations systematically underestimate the threshold energy for HCl elimination.  相似文献   

17.
The Gas Phase Structures of CF3NBr2 and (CF3)2NBr The gas phase structures of the trifluoromethyl bromoamines CF3NBr2 and (CF3)2NBr were determined by electron diffraction. CF3NBr2: N? Br = 188.0(3), N? C = 148.1(13) pm, BrNBr = 111.1(6)° and BrNC = 107.3(8)°; (CF3)2NBr: N? Br = 186.9(4), N? C = 144.9(7) pm, BrNC = 114.9(9)° and CNC = 118.6(24)°. The results for these bromoamines are compared to those for the analogous fluoro and chloroamines.  相似文献   

18.
The First Gadolinium Carbide Fluoride: Gd2CF2 Gd2CF2, the first gadolinium carbide fluoride is prepared by reaction of stoichiometric amounts of GdF3, Gd, and C at 1250°C in sealed Ta-capsules. It is isotypic with Gd2CBr2 (space group P3 m1; a = 373.11(4) and c = 642.5(1) pm). The Gd atoms surround the C atoms octahedrally. Such Gd6C octahedra are condensed via edges to form octahedral sheets, which are separated by double slabs of F?? ions.  相似文献   

19.
A 4-Chloro-5-trifluoromethyl-2,2,4-trifluoro-1,3-dioxolane (1) was synthesised by reaction of CF2(OF)2 with CF3CHCFCl; the elimination of HCl from (1) in basic conditions led to the formation of dioxole perfluoro-4-methyl-1,3-dioxole (2). Both these synthetic steps gave the corresponding product in high yield.A new synthetic route for the preparation of CF3CHCFCl, starting from CF2ClBr and CH2CF2, together with some examples of polymerisation products obtained by reaction of dioxole (2) with fluoroolefins are also reported.  相似文献   

20.
Smog chamber/FTIR techniques were used to measure k(Cl + HCF2OCF2OCF2‐CF2OCF2H) = k(Cl + HCF2O(CF2O)n(CF2CF2O)mCF2H) = (5.0 ± 1.4) × 10?17 cm3 molecule?1 s?1 in 700 Torr of N2/O2 diluent at 296 ± 1 K. The Cl‐initiated atmospheric oxidation of HCF2OCF2OCF2CF2OCF2H and the sample of HCF2O(CF2O)n(CF2CF2O)mCF2H used in this work gave COF2 in molar yields of (476 ± 36)% and (859 ± 63)%, respectively, with no other observable carbon containing products (i.e., essentially complete conversion of both hydrofluoropolyethers into COF2). The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers of the general formula HCF2O(CF2O)n(CF2CF2O)mCF2H. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 819–825, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号