首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The detection of hydrogen sulfide (H2S) by 2?+?1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2?+?1 REMPI spectrum of H2S near λ?=?302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.  相似文献   

2.
The optimized geometries, vibrational frequencies, and dissociation energies from MP2 and CCSD(T) computations with large correlation consistent basis sets are reported for (H2S)2 and H2O/H2S. Anharmonic vibrational frequencies have also been computed with second-order vibrational perturbation theory (VPT2). As such, the fundamental frequencies, overtones, and combination bands reported in this study should also provide a useful road map for future spectroscopic studies of the simple but important heterogeneous H2O/H2S dimer in which the hydrogen bond donor and acceptor can interchange, leading to two unique minima with very similar energies. Near the CCSD(T) complete basis set limit, the HOH⋯SH2 configuration (H2O donor) lies only 0.2 kcal mol−1 below the HSH⋯OH2 structure (H2S donor). When the zero-point vibrational energy is included, however, the latter configuration becomes slightly lower in energy than the former by <0.1 kcal mol−1. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
By using density functional theory (DFT) and high-level ab initio theory, we have investigated the structure, interaction energy, electronic property, and IR spectra of the water trimer cation [(H2O) 3 + ]. Two structures of the water trimer cation [the H3O+ containing linear (3Lp) structure versus the ring (3OO) structure] are compared. For the complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], the 3Lp structure is 11.9?kcal/mol more stable than the 3OO structure. This indicates that the ionization of water clusters produce the hydronium cation moiety (H3O+) and the hydroxyl radical. It is interesting to note that the calculation results of the water trimer cation vary seriously depending on the calculation level. At the level of M?ller?CPlesset second-order perturbation (MP2) theory, the stability of 3OO is underestimated due to the underestimated O??O hemibonding energy. This stability is also underestimated even for the CCSD(T) single point calculations on the MP2-optimized geometry. For the 3OO structure, the MP2 and CCSD(T) calculations give closed-ring structures with a hemi-bond between two O atoms, while the DFT calculations show open-ring structures due to the overestimated O??O hemibonding energy. Thus, in order to obtain reliable stabilities and frequencies of the water trimer cation, the CCSD(T) geometry optimizations and frequency calculations are necessary. In this regard, the DFT functionals need to be improved to take into account the proper O??O hemibonding energy.  相似文献   

4.
The nature of the S? H???S hydrogen‐bonding interaction in the H2S dimer and its structure has been the focus of several theoretical studies. This is partly due to its structural similarity and close relationship with the well‐studied water dimer and partly because it represents the simplest prototypical example of hydrogen bonding involving a sulfur atom. Although there is some IR data on the H2S dimer and higher homomers from cold matrix experiments, there are no IR spectroscopic reports on S? H???S hydrogen bonding in the gas phase to‐date. We present experimental evidence using VUV ionization‐detected IR‐predissociation spectroscopy (VUV‐ID‐IRPDS) for this weak hydrogen‐bonding interaction in the H2S dimer. The proton‐donating S? H bond is found to be red‐shifted by 31 cm?1. We were also able to observe and assign the symmetric (ν1) stretch of the acceptor and an unresolved feature owing to the free S? H of the donor and the antisymmetric (ν3) SH stretch of the acceptor. In addition we show that the heteromolecular H2S–MeOH complex, for which both S? H???O and O? H???S interactions are possible, is S‐H???O bound.  相似文献   

5.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

6.
The potential energy surface for the H2S dimer is calculated as the sum of the SCF-MO-LCGO energy with a new, modified, basis set and the estimated dispersion energy. Proton affinities for SH and H2S, and, as their difference, the energy of the proton transfer between two H2S molecules, are also calculated. Despite the limited basis set used, the results are consistent with experimental data.This work was partly supported by the Polish Academy of Sciences within the project PAN-3.  相似文献   

7.
In this paper we describe several characteristics of our supersonic nozzle beam photoelectron spectrometer recently constructed for studying hydrogen-bonded dimers in the gas phase by HeI (58.4 nm) radiation. Using this photoelectron apparatus, we have reinvestigated the HeI photoelectron spectrum of the formic-acid dimer (HCOOH)2 which is well known as a fairly strong doubly hydrogen-bonded dimer. It was found that the (HCOOH)2 spectrum deduced here from the spectrum of the monomer—dimer mixture considerably differs from that reported by Carnovale et al. in the region beyond 16.5 eV. New spectral assignments are given for four ionization bands beyond 16.5 eV. It is also indicated that the lower bound of the dissociation energy of (HCOOH)2+ is estimated to be 1.0 ± 0.1 eV from the threshold of the dimer band (11.0 eV) obtained in this experiment. This value is considerably smaller than the value of 1.7 ± 0.2 eV recently reported for the water dimer cation (H2O)2+.  相似文献   

8.
Ab initio molecular orbital calculations are reported for H2S, its radical cation, and the H2SSH radical cation. At the MP 2/4-31G level the S? S three-electron bond is 2.85 Å long, and has a dissociation energy of 31.2 kcal mole?1. The performance of MNDO semiempirical molecular orbital theory is compared with the ab initio results.  相似文献   

9.
Radical cations of diamondoids, a fundamental class of very stable cyclic hydrocarbon molecules, play an important role in their functionalization reactions and the chemistry of the interstellar medium. Herein, we characterize the structure, energy, and intermolecular interaction of clusters of the amantadine radical cation (Ama+, 1-aminoadamantane) with solvent molecules of different interaction strength by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+Ln clusters, with L=Ar (n≤3) and L=N2 and H2O (n=1), and dispersion-corrected density functional theory calculations (B3LYP−D3/cc-pVTZ). Three isomers of Ama+ generated by electron ionization are identified by the vibrational properties of their rather different NH2 groups. The ligands bind preferentially to the acidic NH2 protons, and the strength of the NH…L ionic H-bonds are probed by the solvation-induced red-shifts in the NH stretch modes. The three Ama+ isomers include the most abundant canonical cage isomer ( I ) produced by vertical ionization, which is separated by appreciable barriers from two bicyclic distonic iminium ions obtained from cage-opening (primary radical II ) and subsequent 1,2 H-shift (tertiary radical III ), the latter of which is the global minimum on the Ama+ potential energy surface. The effect of solvation on the energetics of the potential energy profile revealed by the calculations is consistent with the observed relative abundance of the three isomers. Comparison to the adamantane cation indicates that substitution of H by the electron-donating NH2 group substantially lowers the barriers for the isomerization reaction.  相似文献   

10.
Ab initio molecular orbital theory using basis sets up to 6-311G* *, with electron correlation incorporated via configuration interaction calculations with single and double substitutions, has been used to study the structures and energies of the C3H2 monocation and dication. In agreement with recent experimental observations, we find evidence for stable cyclic and linear isomers of [C3H2]+ ˙. The cyclic structure (, a) represents the global minimum on the [C3H2]+ ˙ potential energy surface. The linear isomer (, b) lies somewhat higher in energy, 53 kJ mol?1 above a. The calculated heat of formation for [HCCCH]+ ˙ (1369 kJ mol?1) is in good agreement with a recent experimental value (1377 kJ mol?1). For the [C3H2]2+ dication, the lowest energy isomer corresponds to the linear [HCCCH]2+ singlet (h). Other singlet and triplet isomers are found not to be competitive in energy. The [HCCCH]2+ dication (h) is calculated to be thermodynamically stable with respect to deprotonation and with respect to C? C cleavage into CCH+ + CH+. The predicted stability is consistent with the frequent observation of [C3H2]2+ in mass spectrometric experiments. Comparison of our calculated ionization energies for the process [C3H2]+ ˙ → [C3H2]2+ with the Qmin values derived from charge-stripping experiments suggests that the ionization is accompanied by a significant change in structure.  相似文献   

11.
The energy transfer reactions He(23S) + H2O and He(23S) + H2S were studied spectroscopically in the visible and ultraviolet ranges in a flowing afterglow apparatus. No primary triatomic ion emission was observed in this study. Only dissociative fragments were found to emit. In the He(23S)/H2O system intense OH(A2Σ+ → X2Πi) emission bands and hydrogen Balmer series were observed while in the He(23S)/H2S system intense HS+(A3Πi → X3 Σ?), weak hydrogen Balmer series and some atomic sulfur lines were found. It is concluded that dissociative processes are competitive with Penning ionization in these energy transfer reactions with other possible reaction channels playing inferior roles. The post-ionization process of ion—electron recombination in the flowing afterglow dominates the emission results in the He(23S)/H2O system.  相似文献   

12.
Potential energy surfaces and the autoionization width for the Penning ionization transition He(2 3S) + H2 → He + H+2 + e? have been calculated using the DIM method. The surfaces compare favourably with the existing ab initio calculations, and the approximation to the autoioinization width appear to be reasonable.  相似文献   

13.
Photoionization was used to measure the ionization energy and appearance energy of the ions [M-I]+ from substituted iodobenzenes and 1-iodonaphthalene. It is shown that at the threshold of formation the phenyl cation structure (except p-NH2C6H4 +) is not maintained. The enthalpies of formation of XPh+ and 1-C10H7 + are evaluated.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 548–549, March, 1990.  相似文献   

14.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Non-empirical SCF-MO molecular wavefunctions were computed for the two limiting structures of C2H2F+ with full geometry optimization using double-zeta quality atomic orbital basis sets. The bridged structure (fluorenium ion) was found to be an energy maximum (transition state) about 31 kcal/mole higher than the open structure (fluoro-vinyl cation). The latter, contrary to the unsubstituted vinyl cation, is slightly (4.5 °) bent away from fluorine at the electron deficient centre.  相似文献   

16.
Singly and doubly charged C4H3+/2+ ions generated upon electron ionization (EI) of the neutral precursors 1,3-butadiene, benzene, and exo-methylene cyclopropane, respectively, are examined by sector-field mass-spectrometry. Charge stripping of the mass-selected monocations affords the corresponding dications and charge exchange of the C4H32+ dications allows for the reverse redox process. Refined analysis and additional MS/MS studies suggest that the monocations are mixtures of isomeric ions formed upon ionization, whereas only a single type of dication seems to be formed. As an average of energy-resolved measurements, a vertical ionization energy of IEv(C4H3+)=16.5±0.4 eV is derived. In addition to the experimental work, density functional theory is used for a computational exploration of the mono- and dicationic species. The best theoretical estimates are IEa(C4H3+)=16.33 eV and IEv(C4H3+)=16.49 eV for the most stable isomer H2C=C---CCH+. Combination of the experimental and theoretical findings leads to the conclusion that the diacetylene cation C4H2+ has indeed a positive proton affinity of PA(C4H2+)=1.50±0.42 eV.  相似文献   

17.
18.
The hydrolysis of sulfonylamine (HNSO2) results in the formation of sulfuric acid along with ammonia, and is of significant interest due to their negative impact on environment and life on Earth. The formation of H2SO4 through the reaction of HNSO2 with (H2O)2-4 has been studied using high level electronic structure calculations. This hydrolysis reaction is a step-wise process, in the first step a H-atom from H2O is transferred to the N-atom of HNSO2 which results in the formation of NH2, and in the next step, H2SO4, NH3 and water molecule(s) are formed. The results show that the energy barrier associated with the formation of intermediates and product complexes is reduced by 7 to 10 kcal/mol when the number of water molecules is increased from 2 to 4. The rate constant was calculated using canonical variational transition state theory with small curvature tunneling correction over the temperature range of 200 to 1000 K. At 298 K, the calculated rate constant for the formation of intermediate in the first step is 2.24 × 10−16, 1.03 × 10−12, and 2.10 × 10−11 cm3 mol−1 s−1, respectively, for the reaction with water dimer, trimer and tetramer. The calculated enthalpy and free energy show that the reaction corresponding to the formation of H2SO4 is highly exothermic and exoergic in nature.  相似文献   

19.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

20.
The crystal structure of the title compound, [Ru(C10H8N2S)2(C11H11N3S)](PF6)2·C2H3N, is composed of a bivalent octa­hedral RuII complex, two PF6 anions and an acetonitrile solvent mol­ecule. Two PF6 units are found on a crystallographic binary axis, therefore contributing just one half each to the asymmetric unit cell. The structure displays a peculiar stereochemistry of the cation. Three bidentate ligands around the Ru centre, together with the coordination of the non‐symmetric S atom, mean that these two atoms are chiral. This would lead to four stereoisomers, but only an enantiomeric pair was found in the analyzed sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号