首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NH(A3Π → X3Σ?) and OH(A2Σ+ → X2Π) chemiluminescences from the reaction of CH(X2Π) with NO and O2, respectively, have been observed at room temperature. From the decay of such emissions we have measured the rate constants for these two reactions: kNO = (2.5 ± 0.5) × 10?10 and kO2 = (8 ± 3) × 10?11 cm3 molecule ?1 s?1, which are in agreement with previously reported rates determined by direct CH(X) detection using, laser-induced fluorescence. This indicates that a four-centered mechanism generating these excited species is operative in both reactions. The CH generation from 266 nm photolysis of CHBr3 has also been investigated via analysis of CH* emissions.  相似文献   

2.
Absolute rate constants are reported for reactions of C2O(X?3Σ?) under pseudo-first-order decay conditions. C2O is generated by laser photodissociation of C3O2 at 266 nm, and detected by dye-laser induced fluorescence on the A?3Πi-X?3Σ? transition. Rate constants of (433 ± 12), (3.30 ± 0.12) and (1.12 ± 0.05) × 10?13 cm3 molecule?1 s?1 are reported for reactions with NO, O2 and isobutene. The NO value is approximate due to an apparent dark reaction between NO and C3O2. Upper limits of 1 × 10?14 cm3 molecule?1 s?1 are reported for reactions with H2, CO2, C3H2 and C2H4. The C2O + C3O2 reaction does not follow pseudo-first-order decay kinetics. Two explanations are proposed to explain this observation. Results are compared with previous relative rate measurements and are discussed in terms of their relevance to combustion chemistry.  相似文献   

3.
The kinetics of reactions involving the ground-state azide radical, N3 (X2Πg, have been investigated in a discharge-flow system using mass spectrometric detection with molecular-beam sampling. The following rate constants have been determined at 295 K: Cl + N3Cl → Cl2 + N3,k295 = (1.78 ± 0.26) × 10?12 cm3 s?1 (1σ): N3 + NO → N2O + N2, k295 = (1.19 ± 0.31) × 10.?12 cm3 s?1 (1σ). A method for determining absolute N3 radical concentration is reported.  相似文献   

4.
Absolute rate constants for H-atom abstraction by OH radicals from cyclopropane, cyclopentane, and cycloheptane have been determined in the gas phase at 298 K. Hydroxyl radicals were generated by flash photolysis of H2O vapor in the vacuum UV, and monitored by time-resolved resonance absorption at 308.2 nm [OH(A2Σ+X2Π)]. The rate constants in units of cm3 mol−1 s−1 at the 95% confidence limits were as follows: k(c C3H6) = (3.74 ± 0.83) × 1010, k(c C5H10) = (3.12 ± 0.23) × 1012, k(c C7H14) = (7.88 ± 1.38) × 1012. A linear correlation was found to exist between the logarithm of the rate constant per C H bond and the corresponding bond dissociation energy for several classes of organic compounds with equivalent C H bonds. The correlation favors a value of D(c C3H5–H) = (101 ± 2) kcal mol−1.  相似文献   

5.
The CASPT2 potential energy curves (PECs) for O‐loss dissociation from the X2Π, A2Π, B2Σ+, C2Σ+, 14Σ?, 12Σ?, and 14Π states of the OCS+ ion were calculated. The PEC calculations indicate that X2Π, 14Σ?, 12Σ?, and 14Π correlate with CS+(X2Σ+) + O(3Pg); A2Π and B2Σ+ correlate with CS+(A2Π) + O(3Pg); and C2Σ+ probably correlates with CS+(X2Σ+) + O(1Dg). The CASSCF minimum energy crossing point (MECP) calculations were performed for the C2Σ+/14Σ?, C2Σ+/14Π, A2Π/14Σ?, A2Π/12Σ?, A2Π/14Π, and B2Σ+/12Σ? state pairs and the spin‐obit couplings were calculated at the located MECPs. A conical intersection point between the B2Σ+ and C2Σ+ potential energy surfaces was found at the CASSCF level. Based on our calculations, seven O‐loss predissociation processes of the C2Σ+ state are suggested and an appearance potential value of 7.13 eV for the CS+ + O product group is predicted. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
The photolysis of pure N2O, N2O and N2, and N2O and C3H6 mixtures at 1470 Å and room temperature has been studied to determine the relative importance of the primary processes. The results are where ?{O(1D)} = 0.515 represents both the O(1D) produced in the primary act and that produced by collisional quenching of O(1S); ?{N2(3Σ)} = 0.084 represents only that portion of N2(3?) which dissociates N2O on deactivation; and ?{O(1S)} = 0.38 – ±{N(2D)} represents only that portion of O(1S) which enters into chemical reaction with N2O. If the reaction of O(1S) with N2O yields only N2 and O2 as products, which seems likely from potential-energy curve considerations then ±{O(1S)} = 0.135 ± 0.06 and ?{N(2D)} = 0.245 ± 0.06. Young and coworkers [4] have found from spectroscopic observations that the total quantum yield of O(1S) is about 0.5. Thus it can be concluded that collisional removal of O(1S) by N2O yields mainly O(1D) with chemical reaction being less important. Furthermore, most of the O(1D) is produced this way, and the true primary yield of O(1D) is about 0.15. The metastable N(2D) is not deactivated by N2O, but is removed by chemical reaction to produce N2 and NO. The results further indicate that N2(3Σ) dissociates N2O at least 80% of the time during quenching. The relative efficiency of N2O compared to N2 is about 2 for the removal of O(1D). O(1S) is removed about 90 times as efficiently by C3H6 as by N2O.  相似文献   

7.
Supersonically cooled jets of nitrogen, methane, ethane, cyclopropane, and azomethane are crossed with collimated streams of electrons. The CH (B2Σ? → X2Π) spectra resulting from the electron-induced dissociation of CH4, C2H6, and CH2)3 can be fit with rotation temperatures between 4000 and 6000 K for an electron energy of 100 eV. Flourescence spectra of N2+ (B2Σw+ → X2Π) from the dissociative ionization of azomethane yield a rotational temperature of =8×103 K; from ionization of molecular nitrogen the rotational temperature of B2Σw+ N2+ is 45 K. Mechanisms for these various processes are discussed.  相似文献   

8.
The deactivation of I(2P½) by R-OH compounds (R = H, CnH2n+1) was studied using time-resolved atomic absorption at 206.2 nm. The second-order quenching rate constants determined for H2O, CH3OH, C2H5OH, n-C3H7OH, i-C3H7OH, n-C4H9OH, i-C4H9OH, s-C4H9OH, t-C4H9OH, are respectively, 2.4 ± 0.3 × 10−12, 5.5 ± 0.8 × 10−12, 8 ± 1 × 10−12, 10 ± 1 × 10−12, 10 ± 1 × 10−12, 11.1 ± 0.9 × 10−12, 9.8 ± 0.9 × 10−12, 7.1 ± 0.7 × 10−12, and 4.1 ± 0.4× 10−12 cm3 molec−1 s−1 at room temperature. It is believed that a quasi-resonant electronic to vibrational energy transfer mechanism accounts for most of the features of the quenching process. The influence of the alkyl group and its role in the total quenching rate is also discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
The 6Li2 A1Σu+ υA = 2, J = 33 and υA = 9, J = 20 levels are shown to be spin—orbit perturbed by the b3Πu υb = 9, F1e N = 32 and υb = 15, F1e N = 19 levels from which an electronic matrix element of <b3Πoc|HSO|A1Σ+ > = 0.114±0.006 cm?1 is determined. Previous estimates of this quantity are shown to be incorrect. Although the main and extra levels are separated by less than the 900 K Doppler width of A1Σu+ ? X1Σg+ rotational lines, sub-Doppler intermodulated fluorescence and perturbation-facilitated optical—optical double resonance spectra allow direct observation of the separation of main and extra levels. The mixing coefficients and other perturbation parameters are inferred from a steady state kinetic model of the composite main plus extra lineshape.  相似文献   

10.
《Chemical physics》1987,113(1):119-130
Rotational energy disposal has been measured in CN(X 2Σ, υ″ = 0, 1, 2) following 193 nm dissociation of HCN vapor at 295 K. The fractional populations for the three vibrational states are 0.56 ± 0.08, 0.33 ± 0.13, and 0.11 ± 0.03 for υ″ = 0, 1 and 2 respectively. This distribution is fit well by a Poisson distribution with an average vibrational quantum number of 0.55 corresponding to the average vibrational energy of 1128 ± 294 cm−1. This energy represents (10 ± 3)% of the available energy. The rotational distributions in all three vibrational states can be represented by a single surprisal which depends linearly on N″/Nmax where Nmax is the maximum value of the rotational quantum number permitted by energy conservation and the prior distribution is similarly constrained. The average energy in rotation is 1055 ± 373 cm−1 which represents (9 ± 3)% of that available for disposal. Time-dependence measurements indicate that product CN(X 2Σ, υ = 0) is formed in both a fast (τ < 80 ns) and a slow process. No evidence is found for the production of CN(A 2Π, υ ≈ 0).  相似文献   

11.
The rate constants for the reactions OH(X2Π, ν = O) + NH3k1 H2O + NH2 and OH(X2Π, ν = O) + O3k2 → HO2 + O2 were measured at 298°K by the flash photolysis resonance fluorescence technique. The values of the rate constants thus obtained are K1 = (4.1 ± 0.6) × 10?14 and k2 = (6.5 ± 1.0) × 10?14 in units of cm3 molecule ?1 sec1. The results are discussed in terms of understanding the dynamics of the perturbed stratosphere.  相似文献   

12.
The absolute radiolytic luminescence yield for the emission from the C3Πu state of N2 has been determined for pulsed electron beam irradiation of He/N2 and Ne/N2 mixtures. The yields—corrected for all quenching processes—are compared to those calculated, by Monte-Carlo methods, from a model based on sub-excitation electron processes. The results confirm that this model and the Platzman initial sub-excitation electron distribution function are fully compatible with the observed results.The yields from experiment and theory are G(N2, C3Πu) = 0.079 ± 0.010 and 0.10 ± 0.01, respectively in He/N2; 0.116 ± 0.037 and 0.094 ± 0.007 in Ne/N2 mixtures.The G-values for absolute photon yields may be calculated from this data using appropriate kinetic quenching rate constants.  相似文献   

13.
The fluorescence transitions corresponding to the second positive system of N2 (C3Πu → B3Πg) for Δv = 0, 1 and the first negative system of N+2(B2Σ+u → X2Σ+g) for Δv = 0, 1, 2 have been observed following laser-induced mul excitation of N2.  相似文献   

14.
Silicon atoms react under single collision conditions with N2O to yield chemiluminescent emission corresponding to the SiO a3Σ+?X1Σ+ and b3Π?X1Σ+ intercombination systems and the A1Π?X1Σ+ band system. A most striking feature of the SiN2O reaction is the energy balance associated with the formation of SiO product molecules in the A1Π and b3Π states. A significant energy discrepancy ( = 10000 cm? = 1.24 eV) is found between the available energy to populate the highest energetically accessible excited-state quantum levels and the highest quantum level from which emission is observed. It is suggested that this discrepancy may result from the formation of vibrationally excited N2 in a concerted fast SiN2O reactive encounter. Emission from the SiO a3Σ+ (A1Π) and b3Π(A1Π, E1Σ0+) triplet-state manifold results primarily from intensity borrowing involving the indicated singlet states. Perturbation calculations indicate the magnitude of the mixing between the b3Π, A1Π and E1Σ0+ states ranges between 0.5 and 2%. On the basis of these calculations, the branching ratio (excited triplet)/(excited singlet) is found to be well in excess of 500. An approximate vibrational population distribution is deduced for those molecules formed in the b3Π state. The present studies are correlated with those of previous workers in order to provide an explanation for diverse relaxation effects as well as observed changes in the ratio of a3Σ+ to b3Π emission as a function of pressure and experimental environment. Some of these effects are attributable to a strong coupling between the a3Σ+ and b3Π state. Based on the current results, there appears to be little correlation between either (1) the branching ratio for excited state formation or (2) the total absolute cross section for excited-state formation and (3) the measured quantum yield for the SiN2O reaction. Implications for chemical laser development are considered.  相似文献   

15.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

16.
In strychninium 4‐chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4‐nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H⋯O and C—H⋯π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H⋯π hydrogen bonds. The cations and anions are linked by ionic N—H+⋯O and C—H⋯X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).  相似文献   

17.
The two title proton‐transfer compounds, 5‐methylimidazolium 3‐carboxy‐4‐hydroxybenzenesulfonate, C4H7N2+·C7H5O6S, (I), and bis(5‐methylimidazolium) 3‐carboxylato‐4‐hydroxybenzenesulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three‐dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π interactions.  相似文献   

18.
The rate constants of the reactions of ethoxy (C2H5O), i‐propoxy (i‐C3H7O) and n‐propoxy (n‐C3H7O) radicals with O2 and NO have been measured as a function of temperature. Radicals have been generated by laser photolysis from the appropriate alkyl nitrite and have been detected by laser‐induced fluorescence. The following Arrhenius expressions have been determined: (R1) C2H5O + O2 → products k1 = (2.4 ± 0.9) × 10−14 exp(−2.7 ± 1.0 kJmol−1/RT) cm3 s−1 295K < T < 354K p = 100 Torr (R2) i‐C3H7O + O2 → products k2 = (1.6 ± 0.2) × 10−14 exp(−2.2 ± 0.2 kJmol−1/RT) cm3 s−1 288K < T < 364K p = 50–200 Torr (R3) n‐C3H7O + O2 → products k3 = (2.5 ± 0.5) × 10−14 exp(−2.0 ± 0.5 kJmol−1/RT) cm3 s−1 289K < T < 381K p = 30–100 Torr (R4) C2H5O + NO → products k4 = (2.0 ± 0.7) × 10−11 exp(0.6 ± 0.4 kJmol−1/RT) cm3 s−1 286K < T < 388K p = 30–500 Torr (R5) i‐C3H7O + NO → products k5 = (8.9 ± 0.2) × 10−12 exp(3.3 ± 0.5 kJmol−1/RT) cm3 s−1 286K < T < 389K p = 30–500 Torr (R6) n‐C3H7O + NO → products k6 = (1.2 ± 0.2) × 10−11 exp(2.9 ± 0.4 kJmol−1/RT) cm3s−1 289K < T < 380K p = 30–100 Torr All reactions have been found independent of total pressure between 30 and 500 Torr within the experimental error. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 860–866, 1999  相似文献   

19.
Absolute emission cross sections have been determined for electron impact on CO, NO and N2. For the CO(A 1ΠX 1Σ+) and N2(a 1ΠX 1Σg) radiation our data is in good agreement with that of other groups. For CO+ (B2Σ+X2Σ+) the values of the emission cross sections are different from those measured previously. This discrepancy is explained in terms of an inadequate straylight correction in the former experiments. For the NO(A2Σ+X2Π) emission no previous σem values are known to the authors. Furthermore the electronic transition moments of the NO(A2Σ+X2Π) and CO+(B2ΣX2Σ+) systems have been measured and are found to be independent of the internuclear distance.  相似文献   

20.
A measurement of the electronic transition moment variation for the N2(a'1Σ?uX1Σ+g) band system has allowed a reassessment of the radiative lifetime of N2(a′). Relaxation to N2(a′,υ=0) is established as the major channel for quenching of N2(a1Πg, υ = 0) molecules by Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号