首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two models have been developed to describe the adsorption of a model peripheral protein, colipase, to phospholipid/diacylglycerol (PL/DG) monolayers. One model is applicable at monolayer collapse pressure and at any composition that exceeds the DG mole fraction of PL/DG lateral complexes (Sugár, I. P.; Mizuno, N. K.; Momsen, M. M.; Brockman, H. L. Biophys. J. 2001, 81, 3387-3397). The other model is applicable at any lateral pressure but only below the mole fraction of DG in the complex (Sugár, I. P.; Mizuno, N. K.; Brockman, H. L. Biophys. J. 2005, 89, 3997-4005). Both models assume that initiation of colipase adsorption to the water/lipid interface requires an area of water-exposed hydrophobic surface that exceeds a critical value. In the first model, accessible surface is provided by the head groups of the uncomplexed DG molecules. This surface area follows a binomial distribution. In the second model, accessible area is created by hydrocarbon chains becoming exposed at the water/lipid interface as total lipid packing density of monolayers of PL and/or PL/DG complexes is decreased. This surface area follows a Poisson distribution. The model described in this paper is a unification, extension, and improvement of these models that is applicable at any lateral pressure and any PL/DG mole fraction. Calculated normalized initial colipase adsorption rates are compared with the available experimental values, and predictions of the adsorption rates are made for currently unmeasured compositions and lateral pressure regimes.  相似文献   

2.
Langmuir monolayers can be assembled from molecules that change from a low-energy orientation occupying a large cross-sectional area to a high-energy orientation of small cross-sectional area as the lateral pressure grows. Examples include cyclosporin A, amphotericin B, nystatin, certain alpha-helical peptides, cholesterol oxydation products, dumbbell-shaped amphiphiles, organic–inorganic nanoparticles and hybrid molecular films. The transition between the two orientations leads to a shoulder in the surface pressure-area isotherm. We propose a theoretical model that describes the shoulder and can be used to extract the energy cost per molecule for the reorientation. Our two-state model is based on a lattice–sublattice approximation that hosts the two orientations and a corresponding free energy expression which we minimize with respect to the orientational distribution. Inter-molecular interactions other than steric repulsion are ignored. We provide an analysis of the model, including an analytic solution for one specific lateral pressure near a point of inflection in the surface pressure-area isotherm, and an approximate solution for the entire range of the lateral pressures. We also use our model to estimate energy costs associated with orientational transitions from previously reported experimental surface pressure-area isotherms.  相似文献   

3.
Templer RH  Castle SJ  Curran AR  Rumbles G  Klug DR 《Faraday discussions》1998,(111):41-53; discussion 69-78
In this work we present data from a homologous series of di-pyrenyl phosphatidylcholine (dipyPC) probes which can sense lateral pressure variations in the chain region of the amphiphilic membrane (lateral pressures are tangential to the interface). The dipyPC has pyrene moieties attached to the ends of equal length acyl chains on a phosphatidylcholine molecule. Ultraviolet stimulation produces both monomer and excimer fluorescence from pyrene. At low dilutions of dipyPC in model membranes the excimer signal is entirely intra-molecular and since it depends on the frequency with which the pyrene moieties are brought into close proximity, the relative intensity of the excimer to monomer signal, eta, is a measure of the pressure. We synthesised or purchased dipyPC probes with the pyrene moieties attached to acyl chains having 4, 6, 8 and 10 carbon atoms and then measured eta in fully hydrated bilayers composed of dioleoylphosphatidylcholine and dioleoylphosphatidylethanolamine (DOPC and DOPE respectively). Although the resolution of our measurements of lateral pressure as a function of distance into the monolayer was limited, we did observe a dip in the excimer signal in the region of the DOPC/DOPE cis double bond. As we isothermally increased the DOPE composition, and hence the desire for interfacial curvature, we observed, as expected, that the net excimer signal increased. However this net increase was apparently brought about by a transfer of pressure from the region around the glycerol backbone to the region near the chain ends, with the lateral pressure dropping above the cis double bond but increasing at a greater rate beyond the double bond.  相似文献   

4.
Certain lipid monolayers at the air-water interface undergo a second-order transition from a tilted to an untilted liquid-crystalline state of their lipid hydrocarbon chains at sufficiently large lateral pressure. Recent experimental observations demonstrate that in the presence of divalent cations DNA adsorbs onto a zwitterionic lipid monolayer and decreases the tilt transition pressure. Lowering of the tilt transition pressure indicates that the DNA condenses the lipid monolayer laterally. To rationalize this finding we analyze a theoretical model that combines a phenomenological Landau approach with an extension of the Poisson-Boltzmann model to zwitterionic lipids. Based on numerical calculations of the mean-field electrostatic free energy of a zwitterionic lipid monolayer-DNA complex in the presence of divalent cations, we analyze the thermodynamic equilibrium of DNA adsorption. We find that adsorbed DNA induces a 10% reduction of the electrostatic contribution to the lateral pressure exerted by the monolayer. This result implies a small but notable decrease in the tilt transition pressure. Additional mechanisms due to ion-ion correlations and headgroup reorientations are likely to further enhance this decrease.  相似文献   

5.
Model membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation. For tBLMs, a homogeneous and not too dense monolayer is required to allow for the functional incorporation of complex membrane proteins. We present here an alternative approach to the commonly used self-assembly preparation. Lipids are spread on the air-water interface of a Langmuir film balance and form a monomolecular film. This allows for a better control of the lateral pressure and distribution for subsequent transfer to solid substrates. In this paper, we describe the properties of the surface monolayer, in terms of surface pressure, structure of the lipid molecule, content of lipid mixtures, temperature, and relaxations features. It is shown that a complete mixing of anchor-lipids and free lipids can be achieved. Furthermore, an increase of the spacer lengths and a decrease of the temperature lead to more compact films. This approach is a first step toward the fully controlled assembly of a model membrane system.  相似文献   

6.
The well-known absorption method for measuring metastable and resonant atom densities in reduced-pressure discharges using a low-pressure lamp as a spectral-line source is extended to plasmas sustained at atmospheric pressure where the line profiles are of the Voigt type rather than Gaussian. This technique is further applied to determine the axial distribution of metastable and resonant atom densities in a tubular argon surface-wave (microwave) discharge. At atmospheric pressure, the discharge is radially contracted and determination of the absorption length through lateral probing of the tube becomes a critical issue. Good agreement of the metastable and resonant atom densities calculated from a collisional-radiative model with the measured values supports the validity of the method developed. The model underlines the influence of the molecular ion kinetics on the Ar I 4s level population and reveals an efficient 3-step ionization process involving the 4s and 4p levels for atomic ion formation.  相似文献   

7.
The fabrication of Langmuir and Langmuir-Blodgett (LB) films of an acid-azopolymer (PAzCOOH) is reported. Several techniques were used in their characterization: surface pressure (pi) and surface potential (DeltaV) isotherms, UV-vis reflection spectroscopy, and Brewster angle microscopy (BAM) for the Langmuir films and contact angle measurements, UV-vis, fluorescence, IR and Raman spectroscopy and scanning electronic microscopy (SEM) for the LB films. Our study reveals that lateral chains of the polymer situate preferentially onto the water surface with the acid group in contact with the water, where aggregates are scarcely formed. Therefore, the lateral chains of PAzCOOH can be treated as individual monomers to determine structural properties of the fabricated Langmuir and LB films. Monomeric treatment has been used to interpret UV-vis reflection spectroscopy, and a monomer model has been performed to represent lateral chains using density functional theory at B3LYP 6-31G(d,p) level of theory to assign the observed vibrational spectra.  相似文献   

8.
We have combined experiments with atomic-scale molecular dynamics simulations to consider the influence of ethanol on a variety of lipid membrane properties. We first employed isothermal titration calorimetry together with the solvent-null method to study the partitioning of ethanol molecules into saturated and unsaturated membrane systems. The results show that ethanol partitioning is considerably more favorable in unsaturated bilayers, which are characterized by their more disordered nature compared to their saturated counterparts. Simulation studies at varying ethanol concentrations propose that the partitioning of ethanol depends on its concentration, implying that the partitioning is a nonideal process. To gain further insight into the permeation of alcohols and their influence on lipid dynamics, we also employed molecular dynamics simulations to quantify kinetic events associated with the permeation of alcohols across a membrane, and to characterize the rotational and lateral diffusion of lipids and alcohols in these systems. The simulation results are in agreement with available experimental data and further show that alcohols have a small but non-vanishing effect on the dynamics of lipids in a membrane. The influence of ethanol on the lateral pressure profile of a lipid bilayer is found to be prominent: ethanol reduces the tension at the membrane-water interface and reduces the peaks in the lateral pressure profile close to the membrane-water interface. The changes in the lateral pressure profile are several hundred atmospheres. This supports the hypothesis that anesthetics may act by changing the lateral pressure profile exerted on proteins embedded in membranes.  相似文献   

9.
In this work, we analyse theoretically the hypothesis that zwitterionic lipids form dimers in adsorption monolayers on water/ hydrocarbon phase boundary. A dimer can be modelled as a couple of lipid molecules whose headgroup lateral dipole moments have antiparallel orientation. Properties including surface pressure, chemical potentials and activity coefficients are deduced from a general expression for the free energy of the monolayer. The theoretical model is in a good agreement with experimental data for surface pressure and surface potential of lipid monolayers. The results favour the hypothesis about formation of dimers in equilibrium with monomers, with the amount of the species depending on the area per molecule and temperature. The reaction of dimerisation turns out to be exothermic with a heat of about 2.5kT per dimer. The results may be applied to the molecular models of membrane structures and mechanisms.  相似文献   

10.
We propose a model for the liquid-liquid (L(alpha)-->L(alpha(') )) phase transition observed in osmotic pressure measurements of certain charged lamellae-forming amphiphiles. The model free energy combines mean-field electrostatic and phenomenological nonelectrostatic interactions, while the number of dissociated counterions is treated as a variable degree of freedom that is determined self-consistently. The model, therefore, joins two well-known theories: the Poisson-Boltzmann theory for ionic solutions between charged lamellae and the Langmuir-Frumkin-Davies adsorption isotherm modified to account for charged adsorbing species. Minimizing the appropriate free energy for each interlamellar spacing, we find the ionic density profiles and the resulting osmotic pressure. While in the simple Poisson-Boltzmann theory the osmotic pressure isotherms are always smooth, we observe a discontinuous liquid-liquid phase transition when the Poisson-Boltzmann theory is self-consistently augmented by the Langmuir-Frumkin-Davies adsorption. This phase transition depends on the area per amphiphilic head group, as well as on nonelectrostatic interactions of the counterions with the lamellae and interactions between counterion-bound and counterion-dissociated surfactants. Coupling the lateral phase transition in the bilayer plane with electrostatic interactions in the bulk, our results offer a qualitative explanation for the existence of the L(alpha)-->L(alpha(') ) phase transition of didodecyldimethylammonium bromide (DDABr), but the transition's apparent absence for the chloride and the iodide homologs. More quantitative comparisons with experiment require better understanding of the microscopic basis of the phenomenological model parameters.  相似文献   

11.
The liquid states and the liquid-liquid equilibrium of surfactant molecules forming an interphase between air and water have been considered using Monte Carlo computer simulations. Specifically, the expanded and compressed liquid phases observed for surfactant molecules were characterized as a function of pressure and temperature. Simple modified beadlike potentials were implemented in order to describe the interparticle forces between the hydrophobic and hydrophilic portions of surfactant molecules at the air/water interface. A simulation box was defined such that the monolayer was exposed to an externally applied lateral pressure in a modified isothermal-isobaric ensemble, whereas the water bath was modeled in a canonical ensemble. The simulation resembles the experimental setup used to measure lateral pressure (Pi) versus area isotherms obtained with Langmuir troughs. The applied lateral pressure-surface area phase diagram clearly showed the coexistence of the expanded and compressed liquid phases within certain temperature and pressure ranges. Distribution functions of distances and enthalpies for the monolayer were computed to clearly identify each liquid phase and the coexistence region.  相似文献   

12.
We elucidate the influence of unsaturation on single-component membrane properties, focusing on their dynamical aspects and lateral pressure profiles across the membrane. To this end, we employ atomistic molecular dynamics simulations to study five different membrane systems with varying degrees of unsaturation, starting from saturated membranes and systematically increasing the level of unsaturation, ending up with a bilayer of phospholipids containing the docosahexaenoic acid. For an increasing level of unsaturation, we find considerable effects on dynamical properties, such as accelerated dynamics of the phosphocholine head groups and glycerol backbones and speeded up rotational dynamics of the lipid molecules. The lateral pressure profile is found to be altered by the degree of unsaturation. For an increasing number of double bonds, the peak in the middle of the bilayer decreases. This is compensated for by changes in the membrane-water interface region in terms of increasing peak heights of the lateral pressure profile. Implications of the findings are briefly discussed.  相似文献   

13.
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.  相似文献   

14.
The current interest in mixed cationic-zwitterionic lipid membranes derives from their potential use as transfer vectors in nonviral gene therapy. Mixed cationic-zwitterionic lipid membranes have a number of structural properties that are distinct from the corresponding anionic-zwitterionic lipid membranes. As known from experiment and reproduced by computer simulations, the average cross-sectional area per lipid changes nonmonotonically with the mole fraction of the charged lipid, passing through a minimum at a roughly equimolar mixture. At the same time, the average orientation of the zwitterionic headgroup dipoles changes from more parallel to the membrane plane to more perpendicular. We suggest a simple mean-field model that reveals the physical mechanisms underlying the observed structural properties. To backup the mean-field calculations, we have also performed Monte Carlo simulations. Our model extends Poisson-Boltzmann theory to include (besides the cationic headgroup charges) the individual charges of the zwitterionic lipid headgroups. We model these charges to be arranged as dipoles of fixed length with rotational degrees of freedom. Our model includes, in a phenomenological manner, the changes in steric headgroup interactions upon reorientation of the zwitterionic headgroups. Our numerical results suggest that two different mechanisms contribute to the observed structural properties: one involves the lateral electrostatic pressure and the other the zwitterionic headgroup orientation, the latter modifying steric headgroup interactions. The two mechanisms operate in parallel as they both originate in the electrostatic properties of the involved lipids. We have also applied our model to a mixed anionic-zwitterionic lipid membrane for which neither a significant headgroup reorientation nor a nonmonotonic change in the average lateral cross-sectional area is predicted.  相似文献   

15.
The structure and thermodynamic properties of a system of end-grafted flexible polymer chains grafted to a flat substrate and exposed to a solvent of variable quality are studied by molecular dynamics methods. The macromolecules are described by a coarse-grained bead-spring model, and the solvent molecules by pointlike particles, assuming Lennard-Jones-type interactions between pairs of monomers (epsilon(pp)), solvent molecules (epsilon(ss)), and solvent monomer (epsilon(ps)), respectively. Varying the grafting density sigma(g) and some of these energy parameters, we obtain density profiles of solvent particles and monomers, study structural properties of the chain (gyration radius components, bond orientational parameters, etc.), and examine also the profile of the lateral pressure P( parallel)(z), keeping in the simulation the normal pressure P( perpendicular) constant. From these data, the reduction of the surface tension between solvent and wall as a function of the grafting density of the brush has been obtained. Further results include the stretching force on the monomer adjacent to the grafting site and its variation with solvent quality and grafting density, and dynamic characteristics such as mobility profiles and chain relaxation times. Possible phase transitions (vertical phase separation of the solvent versus lateral segregation of the polymers into "clusters," etc.) are discussed, and a comparison to previous work using implicit solvent models is made. The variation of the brush height and the interfacial width of the transition zone between the pure solvent and the brush agrees qualitatively very well with corresponding experiments.  相似文献   

16.
A simplified particle-based computer model for hydrated phospholipid bilayers has been developed and applied to quantitatively predict the major physical features of fluid-phase biomembranes. Compared with available coarse-grain methods, three novel aspects are introduced. First, the main electrostatic features of the system are incorporated explicitly via charges and dipoles. Second, water is accurately (yet efficiently) described, on an individual level, by the soft sticky dipole model. Third, hydrocarbon tails are modeled using the anisotropic Gay-Berne potential. Simulations are conducted by rigid-body molecular dynamics. Our technique proves 2 orders of magnitude less demanding of computational resources than traditional atomic-level methodology. Self-assembled bilayers quantitatively reproduce experimental observables such as electron density, compressibility moduli, dipole potential, lipid diffusion, and water permeability. The lateral pressure profile has been calculated, along with the elastic curvature constants of the Helfrich expression for the membrane bending energy; results are consistent with experimental estimates and atomic-level simulation data. Several of the results presented have been obtained for the first time using a coarse-grain method. Our model is also directly compatible with atomic-level force fields, allowing mixed systems to be simulated in a multiscale fashion.  相似文献   

17.
Summary A theoretical model is derived that describes the influence of lateral light diffusion in a scattering medium on the absorptivity of an absorber spot on top of the substrate. The model uses the lateral resolved reflectivity under point irradiation that has been analyzed experimentally with a scanning-micro-laser-reflectometer. The model allows quantification of the absorptivity by one single equation that contains only the mean radial diffusion length of light and the spot area. Experiment and theory are applied to typical substrates for thin layer chromatography (alumina, silica, cellulose). The diffusion lengths in these substrates are given and the absorptivities of the spots are calculated as a function of the spot area.  相似文献   

18.
An apparatus is described which permits accurate determination of gas adsorption of solids having lower adsorptive capacity. Conventional measurement of gas uptake by solids having surface areas less than 1 m2 is not generally feasible at subatmospheric pressure. The small pressure drop due to adsorption is easily lost in the noise created by ambient temperature fluctuations. Possible experimental errors in the volumetric measurement of gas uptake due to temperature fluctuations were greatly reduced by using an apparatus whose reference and sample adsorption cells are disposed in a lateral symmetry. The apparatus consists of a differential micromanometer whose two arms are connected in a lateral symmetry to a pair of sample and reference burets of nearly equal volume for dosing gas into sample and reference cells also of nearly equal volume. When the two cells are immersed in the same temperature bath this design greatly reduces measurement uncertainties due to fluctuations in the temperature. Surface areas as small as 300, 1 and 0.1 cm2 were measured through volumetric gas uptakes of nitrogen at 78 K, krypton at 78 K and xenon at 90 K, respectively.  相似文献   

19.
Membrane proteins have evolved to fold and function in a lipid bilayer, so it is generally assumed that their stability should be optimized in a natural membrane environment. Yet optimal stability is not always in accord with optimization of function, so evolutionary pressure, occurring in a complex membrane environment, may favor marginal stability. Here, we find that the transmembrane helix dimer, glycophorin A (GpATM), is actually much less stable in the heterogeneous environment of a natural membrane than it is in model membranes and even common detergents. The primary destabilizing factors are electrostatic interactions between charged lipids and charged GpATM side chains, and nonspecific competition from other membrane proteins. These effects overwhelm stabilizing contributions from lateral packing pressure and excluded volume. Our work illustrates how evolution can employ membrane composition to modulate protein stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号