首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two polymorphic modifications 1 and 3 of binuclear compound [{Fe(dpia)(NCS)(2)}(2)(bpe)] and pseudo-polymorphic modification [{Fe(dpia)(NCS)(2)}(2)(bpe)]·2CH(3)OH (2), where dpia = di-(2-picolyl)amine, bpe = 1,2-bis(4-pyridyl)ethene, were synthesized, and their structures, magnetic properties, and M?ssbauer spectra were studied. Variable-temperature magnetic susceptibility measurements of three binuclear compounds show different types of magnetic behaviour. The complex 1 exhibits a gradual two-step spin crossover (SCO) suggesting the occurrence of the mixed [HS-LS] (HS: high spin, LS: low spin) pair at the plateau temperature (182 K), at which about 50% of the complexes undergoes a thermal spin conversion. The complex 2 displays an abrupt full one-step spin transition without hysteresis, centred at about 159 K. The complex 3 is paramagnetic over the temperature range 20-290 K. The single-crystal X-ray studies show that all three compounds are built up from the bpe-bridged binuclear molecules. The structure of 1 was solved for three spin isomers [HS-HS], [HS-LS], and [LS-LS] at three temperatures 300 K, 183 K, and 90 K. The crystal structures for 2 and 3 were determined for the [HS-HS] complexes at room temperature. The analysis of correlations between the structural characteristics and different types of magnetic behaviour for new 1-3 binuclear complexes, as well as for previously reported binuclear compounds, revealed that the SCO process (occurrence of full one-step, two-step, or partial (50%) SCO) is specified by the degree of distortion of the octahedral geometry of the [FeN(6)] core, caused by both packing and strain effects arising from terminal and/or bridging ligands. The comparison of the magnetic properties and the networks of intra- and inter-molecular interactions in the crystal lattice for the family of related SCO binuclear compounds suggests that the intermolecular interactions play a predominant role in the cooperativeness of the spin transition relative to the intramolecular interactions through the bridging ligand.  相似文献   

2.
The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin‐sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2‐butanol, and these solvates with (R)‐ and (S)‐alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both from dia‐ to para‐ and from para‐ to diamagnetic states in heating and cooling modes respectively. Furthermore, the Mössbauer spectroscopy directly visualizes how the metallic centres in a chiral coordination framework differently sense the interaction with guests of different chiralities.  相似文献   

3.
JB Lin  W Xue  BY Wang  J Tao  WX Zhang  JP Zhang  XM Chen 《Inorganic chemistry》2012,51(17):9423-9430
A two-dimensional (2D) square-grid type porous coordination polymer [Fe(bdpt)(2)]·guest (1·g, Hbdpt = 3-(5-bromo-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole) with isolated small cavities was designed and constructed as a spin-crossover (SCO) material based on octahedral Fe(II)N(6) units and an all-nitrogen ligand. Three guest-inclusion forms were successfully prepared for 1·g (1·EtOH for g = ethanol, 1·MeOH for g = methanol, 1 for g = Null), in which the guest molecules interact with the framework as hydrogen-bonding donors. Magnetic susceptibility measurements showed that 1·g exhibited two-step SCO behavior with different transition temperatures (1·EtOH < 1·MeOH < 1) and hysteresis widths (1·EtOH > 1·MeOH > 1 ≈ 0). Such guest modulation of two-step spin crossover temperature and hysteresis without changing two-step state in a porous coordination framework is unprecedented. X-ray single-crystal structural analyses revealed that all two-step SCO processes were accompanied with interesting symmetry-breaking phase transitions from space group of P2(1)/n for all high-spin Fe(II), to P1? for ordered half high-spin and half low-spin Fe(II), and back to P2(1)/n for all low-spin Fe(II) again by lowering temperature. The different SCO behaviors of 1·g were elucidated by the steric mechanism and guest-host hydrogen-bonding interactions. The SCO behavior of 1·g can be also controlled by external physical pressure.  相似文献   

4.
A composite material, {[Fe(L)(TPPE)0.5]?3 CH3OH}n, has been constructed by integrating the spin‐crossover (SCO) subunit FeII{diethyl(E,E)‐2,2′‐[1,2‐phenyl‐bis(iminomethylidyne)]bis(3‐oxobutanoate)‐(2‐)‐N,N′,O3,O3′} and the highly luminescent connector 1,1,2,2‐tetrakis(4‐(pyridin‐4‐yl)phenyl)‐ethene. Its structure contains four staggered 4×4 layers and intercalated methanol. The packing is dominated by considerable H‐bonds either between adjacent layers and between layers and guests. A crystal‐structure transformation was detected upon removal of the guest molecules. The SCO transition of the solvated crystals is centered at ca. 215 K with a non‐symmetrical hysteresis of 25 K wide, and the desolvated [Fe(L)(TPPE)0.5]n exhibits gradual SCO without hysteresis. Intriguingly, the intensity of the fluorescence at 460 nm for the latter is maximized at the SCO transition. The energy transfer between luminescent and SCO entities is achievable as confirmed by theoretical calculations.  相似文献   

5.
Five mononuclear spin crossover iron(II) bis-meridional ligand complexes of the general formula [Fe(L)(2)](X)(2).solvent, have been synthesized, where X = BF(4)- or ClO(4)-; L = 2-(1-pyridin-2-ylmethyl-1H-pyrazol-3-yl)-pyrazine (picpzpz) or 2-(3-(2-pyridyl)pyrazol-1-ylmethyl)pyridine) (picpypz); solvent = MeOH or EtOH. The magnetic and structural consequences of systematic variation of meridional ligand, solvent, and anion, including a desolvated species, have been investigated. The complex [Fe(picpzpz)(2)](BF(4))(2).MeOH, 1.MeOH, displays several unique properties including a two-step spin transition with a gradual higher-temperature step ((1)T(1/2) = 197 K) and an abrupt low-temperature step with hysteresis ((2)T(1/2) = 91/98 K) and a metastable intermediate spin state below 70 K with quench-cooling. Removal of the solvent methanol results in the loss of the abrupt step and associated hysteresis (T(1/2) = 150 K). The complexes [Fe(picpzpz)(2)](BF(4))(2).EtOH (1.EtOH), [Fe(picpzpz)(2)](ClO(4))(2).MeOH (2.MeOH), [Fe(picpzpz)(2)](ClO(4))(2).EtOH (2.EtOH), and [Fe(picpypz)(2)](BF(4))(2).MeOH (3.MeOH) all show gradual one-step spin transitions with T(1/2) values in the range 210-250 K. Photomagnetic LIESST measurements on 1.MeOH reveal a near-quantitative excitation of high-spin sites and a unique two-step relaxation process related to the two-step thermal spin transition ((1)T(LIESST) = 49 K and (2)T(LIESST) = 70 K). The structural consequences of the unusual spin transition displayed by 1.MeOH have been investigated by single-crystal X-ray diffraction structural analyses between 25 and 293 K. Detailed characterization of the unit cell parameter evolution vs temperature reflects both the gradual high-temperature step and abrupt low-temperature step, including the thermal hysteresis, observed magnetically.  相似文献   

6.
A new family of neutral mononuclear iron(II) spin crossover (SCO) compounds, Fe(L1??)? (L1?? = N'-((pyridin-2-yl)methylene)benzohydrazide (HL1), N'-(1-(pyridin-2-yl)ethylidene)-benzohydrazide (HL2), N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide (HL3), 2-hydroxy-N'-((pyridin-2-yl)methylene)benzohydrazide (HL?), 2-hydroxy-N'-(1-(pyridin-2-yl)ethylidene)benzohydrazide (HL?), 2-hydroxy-N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide (HL?)) with N?O? donor sets have been synthesized from series tridentate Schiff base ligands with N,N,O donor sets. The investigation of magnetic properties of these compounds reveal that in the measured temperature range, compound 1 is in the high-spin (HS) state, and compound 3 and 6 are mainly in the low-spin (LS) state, whereas the other compounds exhibit various SCO properties: compound 2 undergoes a gradual incomplete SCO with characteristic temperature T(1/2) higher than 350 K; compound 4 exhibits a special stepwise thermally induced SCO occurring at ~150 K (smooth) and 200 K (two-steps, with T(S1↑/↓) = 204/202 K and T(S2↑/↓) = 227/219 K) with a mixture of the HS and LS states yielded below 100 K; compound 5 shows a gradual and complete LS?HS SCO with characteristic temperature T(1/2) = 273 K. All the three SCO compounds show the LIESST (light induced exited spin state trapping) effect with different levels of photoconversion. To thoroughly analyze these behaviours, M?ssbauer spectra and DSC of 4 and 5, crystal structures of all the compounds at 290 K and 5 in the LS state at 110 K were carried out, which confirmed the structural changes accompanying the spin transition. In addition, alkyl substitution effect on the ligand field was suggested for this system.  相似文献   

7.
We report the synthesis and characterisation of the new polytopic ligands, ddta (N,N-di(pyridin-2-yl)-4,6-di(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)-1,3,5-triazin-2-amine) and tptd (N(2),N(2),N(4),N(4)-tetra(pyridin-2-yl)-6-(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)-1,3,5-triazine-2,4-diamine). Each contains N-donor dipyridylamino binding sites as well as separate and distinct mono-aza-15-crown-5 binding sites. The ligand ddta has been used to synthesise the polymeric heterometallic SCO compound trans-[Fe(II)(NCS)(2)(ddta)(2)Na(2)](ClO(4))(2)·4CH(3)CH(2)CH(2)OH, 1, and tptd has been used to synthesise the polymeric SCO compound trans-[Fe(II)(NCS)(2)(tptd)]·CH(3)OH, 2, and the dinuclear compound cis-[(Fe(II))(2)(NCS)(4)(tptd)(2)], 3. Magnetic susceptibility measurements show that 1 and a desolvated sample of 2 each undergo a gradual, one-step spin transition with T(?) values of ~240 K and ~110 K, respectively. The paucity of inter-chain intermolecular interactions, as well as the flexible, covalent bridges between Fe(II) spin crossover sites, are likely to contribute to the gradual nature of the spin transition observed in each case. Variable temperature powder X-ray diffraction studies on 1 show the anisotropic behaviour of the unit cell parameters, where c and the b-c plane are most affected by structural changes occurring as the temperature is lowered.  相似文献   

8.
Bronisz R 《Inorganic chemistry》2007,46(16):6733-6739
The coordination polymer {[Fe(pbtz)3](ClO4)2 . 2EtOH}infinity (1) has been prepared in a reaction between Fe(ClO4)2 . 6H2O and 1,3-di(tetrazol-2-yl)propane (pbtz). The formation of the second product {[Fe(pbtz)3](ClO4)2}infinity (2) was also noticed. Both complexes crystallize in the R3 space group. The single-crystal X-ray diffraction study of 1 (295, 90 and 230 K) revealed that the 2-substituted tetrazole rings (2tz) coordinate monodentately to the metal ions, forming Fe(2tz)6 cores. There are two crystallographically independent iron(II) ions in 1. At 295 K the Fe-N4 bond lengths are equal to 2.173(5) and 2.196(5) A for Fe1 and 2.176(5) and 2.190(4) A for Fe2. The pbtz ligand molecules act as N4,N4' connectors, bridging central atoms in the three directions, which leads to the formation of the 3D network. The crystal lattice of 1 is solvated by ethanol molecules. At 295 K the solvent and ligand molecules are disordered. The results of temperature-dependent magnetic susceptibility measurements (5-300 K), and the single-crystal X-ray diffraction studies (90 K) have exhibited that 1 undergoes the thermally induced spin transition HS<-->LS (SCO). The chiMT(T) dependence shows in the range 200-75 K gradual SCO. Below 75 K the transition is finished and approximately 20% of the HS fraction is present in the sample. The HS-->LS transition is accompanied by a shortening of the Fe-N bonds of 0.15 A. At 90 K the ligand molecules are ordered. The presence of 2 in the reaction product was disclosed accidentally, and only the X-ray diffraction studies (250, 90 K) were performed. Also in 2 iron(II) ions serve as topological nodes of the 3D network. Despite the same network topology, 2 crystallizes without ethanol molecules solvating the crystal lattice. The pbtz molecules bridge the neighboring iron(II) ions, coordinating through N4,N4' atoms of the 2-substituted tetrazole rings forming the Fe(2tz)6 cores. At 250 K the Fe-N bond lengths are equal to 2.208(5) and 2.218(5) A. In contrast to 1, the cooling of the crystal of 2 from 250 to 90 K does not involve the shortening of the Fe-N bond lengths. At this temperature, the Fe-N distances remain characteristic for the HS form of the complex and are equal to 2.203(3) and 2.208(3) A.  相似文献   

9.
The heterometallic hexanuclear cyanide-bridged complex {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (1), its C(15)N and D(2)O enriched forms {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(C(15)N)(3)](4)} (2) and {[Mn(bpym)(D(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (3), and the hexanuclear derivative complex {[Mn(bpym)(H(2)O)](2)[Fe(B(pz)(4))(CN)(3)](4)}·4H(2)O (4) [bpym = 2,2'-bipyrimidine, HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(pz)(4)(-) = tetra(1-pyrazolyl)borate] have been synthesized. Their structures have been determined through single-crystal X-ray crystallography at different temperatures. Whereas 3 and 4 maintain a discrete hexanuclear motif during the entire temperature range investigated (down to 95 K), 1 and 2 exhibit a thermally induced reversible single-crystal to single-crystal phase transition driven by a remarkable concerted rearrangement of hydrogen and cyanide coordination bonds. While hexanuclear complexes are observed in the high temperature phases (noted 1a and 2a) above 200 K, the low temperature phases are composed of one-dimensional coordination polymers noted 1b and 2b. The magnetic properties of the four compounds have been investigated in the 2-300 K range, and they reveal the occurrence of an overall antiferromagnetic behavior. The thermal dependence of the optical reflectivity and the FT-IR absorbance have been studied for 1 in the range 10-300 K and 130-300 K, respectively. A comparative analysis of the structural and electronic properties for 1-4 clearly underlines the major role of the intermolecular interactions in the topological and dimensional rearrangement observed during the structural phase transition. This result opens new perspectives in the design of cyanide-based switchable magnetic materials using coordination bonds rearrangements.  相似文献   

10.
Three analogous one dimensional (1D) polymeric iron(II) spin crossover (SCO) materials containing the new ligand 4,6-bis(2',2'-pyridyl)pyrazine (bdpp) have been comprehensively characterised magnetically (thermal and light-induced) and structurally. Within this series are two polymorphs of the formula [Fe(NCS)(2)(bdpp)], 1 and 2 a, which differ magnetically in that phase 1 undergoes a full two-step SCO (T(1/2(1))=135 K and T(1/2(2))=90 K) whereas phase 2 a remains high spin (HS) over all temperatures. The central distinction between these two materials lies in the presence of intermolecular pi-pi interactions generated by the crystal packing in 1, which are absent in 2 a. The isostructural selenocyanate analogue of 2 a, [Fe(NCSe)(2)(bdpp)], 2 b, undergoes a full two-step SCO (T(1/2(1))=200 K and T(1/2(2))=125 K). Structural analyses of 1 and 2 b at a range of temperatures provide deep insight into their two-step SCO nature. Structural analysis of 1 at 25 K (1(LS-LS)), 123 K (1(LS-HS)) and 250 K (1(HS-HS)) reveals two distinct iron(II) centres at each temperature, with ordered, alternating HS and LS (low spin) sites at the intermediate plateau (IP) temperatures. In contrast, structural analysis of 2 b at 90 K (2 b(LS)), 150 K (2 b(LS/HS)) and 250 K (2 b(HS)) reveals one unique iron(II) centre at each temperature with an "averaged" LS/HS character at the IP temperature. Weak planes of diffuse scattering in the single-crystal X-ray diffraction patterns were observed for this phase at 90 and 150 K, indicating that 1D long range ordering of alternating HS/LS iron(II) centres occurs along the 1D coordination chains, but that there is no correlation between chains. The lack of observable diffuse scattering at 250 K suggests that the onset of the 1D structural ordering in the chain direction corresponds to the first step of the SCO and that this structural transition is electronically driven. The photomagnetic properties of both 1 and 2 b have been investigated and show approximately 62 and 53 % photo-excitation of a HS metastable state at low temperatures and T(LIESST) values of 55 and 49 K, respectively. Relaxation studies on the HS fraction in 2 b fitted well to a stretched exponential model with kinetic parameters indicative of weak cooperativity.  相似文献   

11.
The crystal structure of [Fe(bt)2(NCS)2] (A) was determined by X-ray diffraction at 293 and at 150 K in order to analyze the structural changes associated with the spin transition. The space group is P1 with Z = 2 at both temperatures. Lattice constants are as follows: a = 8.5240(4), b = 11.0730(6), c = 12.5300(8) at 293 K and a = 8.1490(4), b = 11.4390(5), c = 12.1270(6) at 150 K. The iron(II) atom lies at the center of a distorted [FeN6] defined by two bt ligands arranged in a cis conformation. The two remaining coordination positions are occupied by two isothiocyanate anions. The average bond lengths of 2.159(4) A (293 K) and 1.951(2) A (150 K) clearly indicate the change in spin configuration. The trigonal distortion parameter phi has a value of 9.6 degrees and 5.5 degrees at 293 and 150 K, respectively. For A, DeltaV = DeltaV(SCO) = 28 A(3) per formula unit and is accompanied by a hysteresis of 10 K. chi(M)T vs T curves at atmospheric pressure for A show an abrupt spin transition with Tc downward arrow = 176 K and Tc upward arrow = 187 K. The thermodynamic parameters associated with the spin transition are DeltaH = 8.4 +/- 0.4 kJ mol(-1) and DeltaS = 46.5 +/- 3 J K mol(-1). The thermal dependence of the magnetic susceptibility at different pressures, 0.1-0.91 GPa, points out an unusual behavior, which can only be understood in terms of a crystallographic phase transition or a change in the bulk modulus of the complex. Polymorph B crystallizes in the C2/c space group with an average Fe-N bond length of 2.168(2) A and phi = 14.7 degrees at 293 K. B remains in the HS configuration even at pressures of 1.06 GPa.  相似文献   

12.
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.  相似文献   

13.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

14.
Ruthenium complexes with bridging dicarboxylate ligands were combined with 1,2-di-4-pyridylethylene (dpe), 2,4,6-tri-4-pyridyltriazine (4-tpt), or 2,4,6-tri-3-pyridyltriazine (3-tpt) to give a tetranuclear rectangle or hexanuclear coordination cages. The cages display a trigonal-prismatic geometry, as evidenced by single-crystal X-ray crystallography. The 4-tpt-based cages are able to encapsulate polyaromatic molecules such as pyrene, triphenylene, or coronene, whereas the 3-tpt-based cages were found to be incompetent hosts for these guests.  相似文献   

15.
A new clathrate [K(H(2)O)(n)][CuZn(CN)(4)] has been synthesized and its host structure has been determined by the single-crystal X-ray diffraction method. It has a [CuZn(CN)(4)](-) tridymite-like 3D framework host, formed with tetrahedral Cu(I) and Zn(II) ions and cyanide bridges and includes water molecules as guests, together with K(+). This tridymite-like structure is the first structural variation of the [CuZn(CN)(4)](-) 3D framework, whose only known structure has been a cristobalite-like structure. The new host shows properties never seen in the previous cristobalite-like structure host. It absorbs and desorbs water as a guest and the water content (n) varies between 1.2 and 11.2 at room temperature, by adjusting the conditions where the clathrate is placed. The desorption of the water causes deformation of the host structure and this deformation is recovered by the absorption of water. The water can be replaced with methanol and acetonitrile by their absorption instead of water. Solid-state (2)H-NMR spectra revealed the molecular motion of the water, methanol and acetonitrile guests in a temperature range between 123 K and 300 K.  相似文献   

16.
A novel bispyrazolylpyridine ligand incorporating lateral phenol groups, H4L, has led to an FeII spin‐crossover (SCO) complex, [Fe(H4L)2][ClO4]2 ? H2O ? 2 (CH3)2CO ( 1 ), with an intricate network of intermolecular interactions. It exhibits a 40 K wide hysteresis of magnetization as a result of the spin transition (with T0.5 of 133 and 173 K) and features an unsymmetrical and very rich structure. The latter is a consequence of the coupling between the SCO and the crystallographic transformations. The high‐spin state may also be thermally trapped, exhibiting a very large TTIESST (≈104 K). The structure of 1 has been determined at various temperatures after submitting the crystal to different processes to recreate the key points of the hysteresis cycle and thermal trapping; 200 K, cooled to 150 K and trapped at 100 K (high spin, HS), slowly cooled to 100 K and warmed to 150 K (low spin, LS). In the HS state, the system always exhibits disorder for some components (one ClO4? and two acetone molecules) whereas the LS phases show a relative ≈9 % reduction in the Fe? N bond lengths and anisotropic contraction of the unit cell. Most importantly, in the LS state all the species are always found to be ordered. Therefore, the bistability of crystallographic order–disorder coupled to SCO is demonstrated here experimentally for the first time. The variation in the cell parameters in 1 also exhibits hysteresis. The structural and magnetic thermal variations in this compound are paralleled by changes in the heat capacity as measured by differential scanning calorimetry. Attempts to simulate the asymmetric SCO behaviour of 1 by using an Ising‐like model underscore the paramount role of dynamics in the coupling between the SCO and the crystallographic transitions.  相似文献   

17.
Two novel three-dimensional coordination polymers [Cu(6)(N(3))(12)(N-Eten)(2)](n) (1) (N-Eten=N-ethylethylenediamine) and {[Cu(9)(N(3))(18)(1,2-pn)(4)].H(2)O}(n) (2) (1,2-pn=1,2-diaminopropane) have been synthesized by the self-assembly reactions of Cu(NO(3))(2).3H(2)O, NaN(3) and small diamine ligands. Their molecular structures were determined by single-crystal X-ray diffraction. Complex 1 is composed of a neutral 3D coordination framework based on unprecedented hexanuclear copper(ii) clusters which features three types of bridging modes for azide (mu-1,1, mu-1,3 and mu-1,1,3). Complex 2 is a novel 3D coordination polymer featuring octanuclear copper-azido clusters and [Cu(diamine)(2)](2+) units which are linked by azido bridges. Magnetic studies for complex show ferromagnetic ordering at 3.5 K, where the azido bridges mediate ferromagnetic coupling between adjacent Cu(II) ions. The magnetic data for 1 were fitted to a uniform hexanuclear copper model which yielded g=2.21, J=6.26 cm(-1), zJ'=0.39 cm(-1). Complex 2 shows ferromagnetic coupling in the octanuclear unit and antiferromagnetic interaction between neighboring units.  相似文献   

18.
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4)2⋅6 H2O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2(RCN)2](BF4)2nRCN (n=2 for R=CH3 ( 1 ) and n=0 for R=C2H5 ( 2 ) C3H7 ( 3 ), C3H5 ( 4 ), CH2Cl ( 5 )) exhibiting spin crossover (SCO). SCO in 1 and 3 – 5 is complete and occurs above 160 K. In 2 , it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2=78 K, T1/2=123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2 . An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS−VLS) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe–nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2(C2H5CN/C3H7CN)2](BF4)2 mixed crystals ( 2 a , 2 b ), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1 – 5 suggest a particular possibility of 2 to adopt a low (140–145°) value of its Fe-N-C(propionitrile) angle.  相似文献   

19.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

20.
Iron(II) poly(pyrazolyl)borate complexes have been investigated to determine the impact of substituent effects, intramolecular ligand distortions, and intermolecular supramolecular structures on the spin-state crossover (SCO) behavior. The molecular structure of Fe[HB(3,4,5-Me3pz)3]2 (pz = pyrazolyl ring), a complex known to remain high spin when the temperature is lowered, reveals that this complex has an intramolecular ring-twist distortion that is not observed in analogous complexes that do exhibit a SCO at low temperatures, thus indicating that this distortion greatly influences the properties of these complexes. The structure of Fe[B(3-(cy)Prpz)4]2.(CH3OH) ((cy)Pr = cyclopropyl ring) at 294 K has two independent molecules in the unit cell, both of which are high spin; only one of these high-spin iron(II) sites, the site with the lesser ring-twist distortion, is observed to be low-spin iron(II) in the 90 K structure. A careful evaluation of the supramolecular structures of these complexes and several similar complexes reported previously revealed no strong correlation between the supramolecular packing forces and their SCO behavior. Magnetic and M?ssbauer spectral measurements on Fe[B(3-(cy)Prpz)4]2 and Fe[HB(3-(cy)Prpz)3]2 indicate that both complexes exhibit a partial SCO from fully high-spin iron(II) at higher temperatures, respectively, to a 50:50 high-spin/low-spin mixture of iron(II) below 100 K. These results may be understood, in the former case, by the differences in ring-twisting and, in the latter case, by a phase transition; in all complexes in which a phase transition is observed, this change dominates the SCO behavior. A comparison of the M?ssbauer spectral properties of these two complexes and of Fe[HB(3-Mepz)3]2 with that of other complexes reveals correlations between the M?ssbauer-effect isomer shift and the average Fe-N bond distance and between the quadrupole splitting and the average FeN-NB intraligand dihedral torsion angles and the distortion of the average N-Fe-N intraligand bond angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号