首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells.  相似文献   

2.
3.
Some fatty acids and derivatives are known to induce cell death in cancer cells. Mitochondria may have important roles in the death process. Therefore, we investigated the mitochondrial contribution in cell death induced by a modified fatty acid, tetradecylthioacetic acid (TTA), which cannot be beta-oxidized. TTA treatment induced apoptosis in IPC-81 leukemia cells via depolarization of the mitochondrial membrane potential (deltapsi) and early release of cytochrome c, accompanied by depletion of mitochondrial glutathione. Caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP) occurred at a late stage, but the broad-spectra caspase inhibitor zVAD-fmk did not block TTA-induced apoptosis. Overexpression of Bcl-2 partially prevented TTA-induced apoptosis, whereas cAMP-induced cell death was completely blocked. In conclusion, TTA seems to trigger apoptosis through mitochondrial-mediated mechanisms and selective modulation of the mitochondrial redox equilibrium.  相似文献   

4.
BACKGROUND: Vanilloids, such as capsaicin and resiniferatoxin (RTX), are recognized at the cell surface by vanilloid receptor type 1 (VR1), which has recently been cloned. VR1 mediates the effects of capsaicin and RTX in VR1-expressing cells, but vanilloids can induce apoptosis through a pathway not mediated by VR1. Phorboid 20-homovanillates can be used to investigate cell death induced by vanilloids. RESULTS: 12,13-Diacylphorbol-20 homovanillates were prepared by the sequential esterification of the natural polyol. Phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) induced apoptosis in Jurkat cells to the same extent as RTX. Apoptosis was preceded by an increase in intracellular reactive oxygen species and by the loss of mitochondrial transmembrane potential. PPAHV-induced apoptosis was mediated by a pathway involving caspase-3 activation and was initiated at the S phase of the cell cycle. The cell-death pathway triggered by VR1 activation was studied in 293T cells transfected with the cloned rat vanilloid receptor. In this system, capsaicin and PPAHV induced cell death by an apparent necrotic mechanism, which was selectively inhibited by the competitive vanilloid receptor antagonist capsazepine. Interestingly, phorbol-12, 13-bisnonanoate-20-homovanillate, an analogue of PPAHV, induced cell death in VR1-transfected cells but could not trigger apoptosis in the Jurkat cell line. CONCLUSIONS: Vanilloids can induce cell death through different signalling pathways. The cell death induced in a VR1-independent manner has the hallmark of apoptosis, whereas the cell death mediated by vanilloids binding to VR1 is seemingly necrotic. Phorboid homovanillates that have antitumour and anti-inflammatory activities but lack the undesirable side effects of the natural vanilloids could be developed as potential drugs.  相似文献   

5.
Cancer has always been one of the most common malignant diseases in the world. Therefore, there is an urgent need to find potent agents with selective antitumor activity against cancer cells. It has been reported that antimicrobial peptides (AMPs) can selectively target tumor cells. In this study, we focused on the anti-tumor activity and mechanism of Brevivin-1RL1, a cationic α-helical AMP isolated from frog Rana limnocharis skin secretions. We found that Brevivin-1RL1 preferentially inhibits tumor cells rather than non-tumor cells with slight hemolytic activity. Cell viability assay demonstrated the intermolecular disulfide bridge contributes to the inhibitory activity of the peptide as the antitumor activity was abolished when the disulfide bridge reduced. Further mechanism studies revealed that both necrosis and apoptosis are involved in Brevivin-1RL1 mediated tumor cells death. Moreover, Brevivin-1RL1 induced extrinsic and mitochondria intrinsic apoptosis is caspases dependent, as the pan-caspase inhibitor z-VAD-FMK rescued Brevinin-1RL1 induced tumor cell proliferative inhibition. Immunohistology staining showed Brevivin-1RL1 mainly aggregated on the surface of the tumor cells. These results together suggested that Brevivin-1RL1 preferentially converges on the cancer cells to trigger necrosis and caspase-dependent apoptosis and Brevivin-1RL1 could be considered as a pharmacological candidate for further development as anti-cancer agent.  相似文献   

6.
This paper presents the design, fabrication and first results of a microfluidic cell trap device for analysis of apoptosis. The microfluidic silicon-glass chip enables the immobilization of cells and real-time monitoring of the apoptotic process. Induction of apoptosis, either electric field mediated or chemically induced with tumour necrosis factor (TNF-alpha), in combination with cycloheximide (CHX), was addressed. Exposure of cells to the appropriate fluorescent dyes, FLICA and PI, allows one to discriminate between viable, apoptotic and necrotic cells. The results showed that the onset of apoptosis and the transitions during the course of the cell death cascade were followed in chemically induced apoptotic HL60 cells. For the case of electric field mediated cell death, the distinction between apoptotic and necrotic stage was not clear. This paper presents the first results to analyse programmed cell death dynamics using this apoptosis chip and a first step towards an integrated apoptosis chip for high-throughput drug screening on a single cellular level.  相似文献   

7.
This study explores the potential anticancer effects of lesbicoumestan from Lespedeza bicolor against human leukemia cancer cells. Flow cytometry and fluorescence microscopy were used to investigate antiproliferative effects. The degradation of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) was evaluated using immunoprecipitation, Western blotting, and confocal microscopy. Apoptosis was investigated using three-dimensional (3D) Jurkat cell resistance models. Lesbicoumestan induced potent mitochondrial depolarization on the Jurkat cells via upregulated expression levels of mitochondrial reactive oxygen species. Furthermore, the underlying apoptotic mechanisms of lesbicoumestan through the MALT1/NF-κB pathway were comprehensively elucidated. The analysis showed that lesbicoumestan significantly induced MALT1 degradation, which led to the inhibition of the NF-κB pathway. In addition, molecular docking results illustrate how lesbicoumestan could effectively bind with MALT1 protease at the latter’s active pocket. Similar to traditional 2D cultures, apoptosis was markedly induced upon lesbicoumestan treatment in 3D Jurkat cell resistance models. Our data support the hypothesis that lesbicoumestan is a novel inhibitor of MALT1, as it exhibited potent antiapoptotic effects in Jurkat cells.  相似文献   

8.
Cholangiocarcinoma (CC) is a chemoresistant intrahepatic bile duct carcinoma with a poor prognosis. The aims of this study were to identify molecular pathways that enhance sesquiterpene lactone parthenolide (PTL)-induced anticancer effects on CC cells. The effects of PTL on apoptosis and hemoxygenase-1 (HO-1) induction were examined in CC cell lines. The enhancement of PTL-mediated apoptosis by modulation of HO-1 expression and the mechanisms involved were also examined in an in vitro cell system. Low PTL concentrations (5 to 10 microM) led to Nrf2-dependent HO-1 induction, which attenuated the apoptogenic effect of PTL in Choi-CK and SCK cells. PTL-mediated apoptosis was enhanced by the protein kinase C-alpha inhibitor Ro317549 (Ro) through inhibition of expression and nuclear translocation of Nrf2, resulting in blockage of HO-1 expression. Finally, HO-1 silencing resulted in enhancement of apoptotic cell death in CC cells. The combination of PTL and Ro efficiently improved tumor growth inhibition compared to treatment with either agent alone in an in vivo subcutaneous tumor model. In conclusion, the modulation of HO-1 expression substantially improved the anticancer effect of PTL. The combination of PTL and Ro could prove to be a valuable chemotherapeutic strategy for CC.  相似文献   

9.
The present study demonstrates photoinduced generation of superoxide radical anion and singlet oxygen upon UVA irradiation of ethyl 1,4-dihydro-8-nitro-4-oxoquinoline-3-carboxylate (DNQC), and its cytotoxic/phototoxic effects on murine leukemia L1210 cells. The formation of reactive oxygen species (ROS) was investigated by EPR spectroscopy using in situ spin trapping technique and 4-hydroxy-2,2,6,6-piperidine (TMP) for singlet oxygen ((1)O(2)) detection. The EPR spectra monitored upon photoexcitation of aerated solutions of DNQC in dimethylsulfoxide evidenced the efficient activation of molecular oxygen via Types I and II mechanisms. The cytotoxic/phototoxic effects of DNQC, analysis of cell cycle, induction of apoptosis/necrosis, DNA damage and molecular mechanism of apoptotic death of L1210 cells in dark and in the presence of UVA irradiation were compared. DNQC induced a different cytotoxic/phototoxic effect, which was concentration- and time-dependent. The four highest tested concentrations of non-photoactivated and photoactivated DNQC induced immediate cytotoxic/phototoxic effect after 24h cultivation of L1210 cells. This effect decreased with the time of treatment. The irradiation increased the sensitivity of leukemia cell line on DNQC, but the cell sensitivity decreased with time of processing. Quinolone derivative DNQC significantly induced direct DNA strand breaks in L1210 cells, which were increased with the irradiation of cells. The DNA damage generated by DNQC alone/with combination of UVA irradiation induced cell arrest in G(0)/G(1) and G(2)/M phases, decrease in the number of L1210 cells in Sphase and apoptotic cell death of certain part of cell population after 24 h of influence. DNQC alone/with combination of UVA irradiation induced apoptosis in L1210 cells through ROS-dependent mitochondrial pathway.  相似文献   

10.
11.
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.  相似文献   

12.
《化学:亚洲杂志》2018,13(18):2730-2738
A promising cancer‐targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF‐related apoptosis‐inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)−polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL‐induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer‐cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP‐2/MMP‐9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal‐based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.  相似文献   

13.
14.
Paclitaxel is one of the chemotheraputic drugs widely used for the treatment of nonsmall cell lung cancer (NSCLC) patients. Here, we tested the ability of α-tocopheryl succinate (TOS), another promising anticancer agent, to enhance the paclitaxel response in NSCLC cells. We found that sub-apoptotic doses of TOS greatly enhanced paclitaxel-induced growth suppression and apoptosis in the human H460 NSCLC cell lines. Our data revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor) or z-IETD-FMK (a caspase-8 inhibitor) blocked TOS/paclitaxel cotreatment-induced PARP cleavage and apoptosis, suggesting that TOS potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in H460 cells. Furthermore, the growth suppression effect of TOS/paclitaxel combination on human H460, A549 and H358 NSCLC cell lines were synergistic. Our observations indicate that combination of paclitaxel and TOS may offer a novel therapeutic strategy for improving paclitaxel drug efficacy in NSCLC patient therapy as well as for potentially lowering the toxic side effects of paclitaxel through reduced drug dosage.  相似文献   

15.
Photodynamic therapy (PDT), a cancer treatment using a photosensitizer and visible light, has been shown to induce apoptosis or necrosis. We report here that Purpurin-18 (Pu18) in combination with light induces rapid apoptotic cell death in the human leukemia cell line (HL60) at low doses and necrosis at higher concentrations. Cells treated with Pu18 and light under apoptotic conditions exhibited DNA laddering and an increase in both cellular content of subdiploid DNA and externalization of phosphatidylserine (PS), indicating DNA fragmentation and loss of membrane phospholipid asymmetry. In the absence of light activation, Pu18 at nanomolar concentrations had no detectable cytotoxic effect. Caspase-3 activity was increased even after 1 h from treatment with low doses of Pu18 and light. The PS exposure and nuclear features of apoptosis were prevented by treatment of cells before illumination with caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK). Conversely, the caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-aldehyde (Ac-YVAD-CHO) failed to suppress the apoptosis. No protective effect of the three caspase inhibitors was observed when the cells were exposed to necrotic concentrations of Pu18 and light. Our results show that caspase-3, but not caspase-1, is involved in the signaling of apoptotic events in PDT with Pu18-induced apoptosis of HL60 cells. Moreover, both the time course of PS exposure and the effect of caspase inhibitors on it indicate that it is regulated in the same manner as DNA fragmentation.  相似文献   

16.
17.
Lysophosphatidylcholine (LPC) is a bioactive lipid generated by phospholipase A2-mediated hydrolysis of phosphatidylcholine. In the present study, we demonstrate that LPC stimulates phospholipase D2 (PLD2) activity in rat pheochromocytoma PC12 cells. Serum deprivation induced cell death of PC12 cells, as demonstrated by decreased viability, DNA fragmentation, and increased sub-G1 fraction of cell cycle. LPC treatment protected PC12 cells partially from the cell death and induced neurite outgrowth of the cells. Overexpression of PLD2 drastically enhanced the LPC-induced inhibition of apoptosis and neuritogenesis. Pretreatment of the cells with 1-butanol, a PLD inhibitor, completely abrogated the LPC-induced inhibition of apoptosis and neurite outgrowth in PC12 cells overexpressing PLD2. These results indicate that LPC possesses the neurotrophic effects, such as anti-apoptosis and neurite outgrowth, through activation of PLD2.  相似文献   

18.
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.  相似文献   

19.
Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox−/− mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.  相似文献   

20.
Study the oxidative injury of yeast cells by NADH autofluorescence   总被引:1,自引:0,他引:1  
Autofluorescence has an advantage over the extrinsic fluorescence of an unperturbed environment during investigation, especially in complex system such as biological cells and tissues. NADH is an important fluorescent substance in living cells. The time courses of intracellular NADH autofluorescence in the process of yeast cells exposed to H(2)O(2) and ONOO(-) have been recorded in detail in this work. In the presence of different amounts of H(2)O(2) and ONOO(-), necrosis, apoptosis and reversible injury are initiated in yeast cells, which are confirmed by acridine orange/ethidum bromide and Annexin V/propidium iodide staining. It is found that intracellular NADH content increases momently in the beginning of the apoptotic process and then decreases continually till the cell dies. The most remarkable difference between the apoptotic and the necrotic process is that the NADH content in the latter case changes much more sharply. Further in the case of reversible injury, the time course of intracellular NADH content is completely different from the above two pathways of cell death. It just decreases to some degree firstly and then resumes to the original level. Based on the role of NADH in mitochondrial respiratory chain, the time course of intracellular NADH content is believed to have reflected the response of mitochondrial redox state to oxidative stress. Thus, it is found that the mitochondrial redox state changes differently in different pathways of oxidative injury in yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号