首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process.  相似文献   

2.
The effect of roughness on adhesion force distribution was studied in the gas phase. Spherical gold particles with diameters between 5 and 20 microm were generated in a flame process and glued onto atomic force microscope (AFM) cantilevers directly after. Nanostructured substrates with defined roughness were produced by a dip-coating process. The geometry of the adhering partners was determined by AFM imaging, and the adhesion force was measured with the AFM. Depending on the roughness of the particles and the substrates, three types of distribution functions can be identified; two of them can be explained with a simple model. The obtained adhesion force distributions not only agree with those experimentally recorded in previous studies of commercially important powders (e.g., alumina, toner, and gold on different substrates) but also agree with distributions reported in the literature.  相似文献   

3.
A novel cell-adhesion surface, controlled by nanometer-scale topography and chemical patterning, was developed using semiconductor fabrication methods and the formation of self-assembled monolayers. The patterned surface had a sharp contrast between the adsorption and non-adsorption of proteins and cells, and the contrast could be maintained for more than 10 days. The patterning method could easily realize a single cell array and control of the cell morphology. The nanometer-scale patterned surface could control cell adhesion and proliferation. Using the patterned surface will contribute to studies about cell-surface interactions.  相似文献   

4.
A novel approach to reproducibly generating randomly rough surfaces over large areas and generating surface roughness gradients is presented. By tuning the electrochemical deposition potential for silver onto an electrode, the island nucleation density can be systematically varied resulting in thin films of different roughness. We find that the potential range that significantly influences the surface roughness also corresponds to a reaction/mixed-controlled deposition regime. The roughness can be replicated onto other moldable materials, thus enabling future studies involving the effect of surface roughness.  相似文献   

5.
We show experimentally and analytically that for single-valued, isotropic, homogeneous, randomly rough surfaces consisting of bumps randomly protruding over a continuous background, superhydrophobicity is related to the power spectral density of the surface height, which can be derived from microscopy measurements. More precisely, superhydrophobicity correlates with the third moment of the power spectral density, which is directly related to the notion of Wenzel roughness (i.e., the ratio between the real area of the surface and its projected area). In addition, we explain why randomly rough surfaces with identical root-mean-square roughness values may behave differently with respect to water repellence and why roughness components with wavelength larger than 10 μm are not likely to be of importance or, stated otherwise, why superhydrophobicity often requires a contribution from submicrometer-scale components such as nanoparticles. The analysis developed here also shows that the simple thermodynamic arguments relating superhydrophobicity to an increase in the sample area are valid for this type of surface, and we hope that it will help researchers to fabricate efficient superhydrophobic surfaces based on the rational design of their power spectral density.  相似文献   

6.
Advancements in the fabrication of microfluidic and nanofluidic devices and the study of liquids in confined geometries rely on understanding the boundary conditions for the flow of liquids at solid surfaces. Over the past ten years, a large number of research groups have turned to investigating flow boundary conditions, and the occurrence of interfacial slip has become increasingly well-accepted and understood. While the dependence of slip on surface wettability is fairly well understood, the effect of other surface modifications that affect surface roughness, structure and compliance, on interfacial slip is still under intense investigation. In this paper we review investigations published in the past ten years on boundary conditions for flow on complex surfaces, by which we mean rough and structured surfaces, surfaces decorated with chemical patterns, grafted with polymer layers, with adsorbed nanobubbles, and superhydrophobic surfaces. The review is divided in two interconnected parts, the first dedicated to physical experiments and the second to computational experiments on interfacial slip of simple (Newtonian) liquids on these complex surfaces. Our work is intended as an entry-level review for researchers moving into the field of interfacial slip, and as an indication of outstanding problems that need to be addressed for the field to reach full maturity.  相似文献   

7.
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.  相似文献   

8.
Mechanisms of energy dissipation during solid-solid and solid-liquid friction are discussed. A conservative van der Waals adhesion force, when combined with surface imperfectness, such as deformation, leads to adhesion hysteresis (AH). When an asperity slides upon a substrate, the substrate is subjected to a loading-unloading cycle, and energy is dissipated due to the AH. Another mechanism, which leads to energy dissipation, involves energy barriers between metastable states due to surface roughness. Both mechanisms are fundamental for sliding and result in both solid-liquid and solid-solid friction.  相似文献   

9.
A simple method for using the JKR model to determine interfacial adhesion between two ideal rough surfaces is demonstrated for individual asperity-asperity and asperity-flat contacts both in air and in water. The model takes into account the effect of a modified contact area at separation due to viscoelastic effects. The equilibrium version of the model significantly underestimates the measured adhesion, whereas the viscoelastic version of the model is much closer to the measured data. The asperity-flat geometry used with the viscoelastic version of the model seems to fit the experimental results best. This was thought to be due to the unlikely occurrence of direct asperity-asperity contacts. Instead, it would seem that the asperities have a far higher chance of fitting between each other on opposing surfaces, leading to correspondingly higher pull-off forces measured on separation. Many possible extensions to the roughness model described here may be made, allowing a much-improved understanding of the contact mechanics between two rough surfaces.  相似文献   

10.
A combined theoretical and experimental study of the adhesion of alumina particles and polystyrene latex spheres to silicon dioxide surfaces was performed. A boundary element technique was used to model electrostatic interactions between micron-scale particles and planar surfaces when the particles and surfaces were in contact. This method allows quantitative evaluation of the effects of particle geometry and surface roughness on the electrostatic interaction. The electrostatic interactions are combined with a previously developed model for van der Waals forces in particle adhesion. The combined model accounts for the effects of particle and substrate geometry, surface roughness and asperity deformation on the adhesion force. Predictions from the combined model are compared with experimental measurements made with an atomic force microscope. Measurements are made in aqueous solutions of varying ionic strength and solution pH. While van der Waals forces are generally dominant when particles are in contact with surfaces, results obtained here indicate that electrostatic interactions contribute to the overall adhesion force in certain cases. Specifically, alumina particles with complex geometries were found to adhere to surfaces due to both electrostatic and van der Waals interactions, while polystyrene latex spheres were not affected by electrostatic forces when in contact with various surfaces.  相似文献   

11.
We study ion condensation on a patterned surface with stripes of alternating charge. The competition between adsorbed ion-ion and adsorbed ion-surface interactions leads to the formation of different strongly correlated structures of condensed ions in the low-temperature limit (LTL). We consider two types of arrangements which have lowest energy in the LTL: (1) ions adsorbed onto the stripe center lines and (2) arrays of dipoles at the interfaces between charged domains. We determine the preferred arrangement as a function of surface charge density, the chemical potential of the ions in the surrounding medium, and the geometric parameters of the system. We determine the conditions for the appearance of more complex ionic patterns by considering simple perturbations of the stripe-centered and dipolar array structures.  相似文献   

12.
The behavior of thin wetting films on chemically patterned surfaces was investigated. The patterning was performed by means of imprinting of micro-grid on methylated glass surface with UV-light (λ=184.8 nm). Thus imprinted image of the grid contained hydrophilic cells and hydrophobic bars on the glass surface. For this aim three different patterns of grids were utilized with small, medium and large size of cells. The experiment showed that the drainage of the wetting aqueous films was not affected by the type of surface patterning. However, after film rupturing in the cases of small and medium cells of the patterned grid the liquid from the wetting film underwent fast self-organization in form of regularly ordered droplets covering completely the cells of the grid. The droplets reduced significantly their size upon time due to evaporation. In the cases of the largest cell grid, a wet spot on the place of the imprinted grid was formed after film rupturing. This wet spot disassembled slowly in time. In addition, formation of a periodical zigzag three-phase contact line (TPCL) was observed. This is a first study from the planned series of studies on this topic.  相似文献   

13.
We report an experimental investigation on advancing contact lines of large drops spreading on chemically patterned surfaces. The model substrates were prepared using microphotolithography allowing precise control of the position and the size of the wettability patterns. Experiments were performed exploring different surface geometries: from ordered to disordered fields of defects and from low to high surface densities. The shape of the contact line between two isolated defects was investigated as a function of the distance. Portions of the contact line on the defects and on the matrix were studied during spreading experiments and were related to the apparent contact angles measured from the final thickness of the drops. A modified Cassie equation based on the line fraction of defects is proposed.  相似文献   

14.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

15.
Molecular dynamics simulations were used to study the effect of periodic roughness of PE and PVC polymer surfaces on the hydrophobicity. Pillars of different lateral dimensions and heights were derived from flat crystalline surfaces, and the results of nanoscale simulations on the structured surfaces were compared with theoretical predictions of the Wenzel and Cassie equations. Hydrophobicity increased on all rough surfaces, but the increase was greater on the structured PE surfaces because of the larger water contact angle on the flat PE surface than the corresponding PVC surface. Equally sized pillar structures on the two polymers resulted in different equilibrium wetting geometries. Composite contacts were observed on rough PE surfaces, and the contact angle increased with decreasing contact area between the solid and the liquid. Opposite results were obtained for rough PVC surfaces; the contact angle increased with the solid-liquid contact area, in agreement with Wenzel's equation. However, the composite contact was observed if the energies of the wetted and composite contacts were almost equal. Good agreement was obtained between the simulated contact angles and equilibrium droplet shapes and the theories but there were also some limitations of the nanoscale simulations.  相似文献   

16.
Adsorption of copolymers on patterned surfaces is studied using lattice modeling and multiple Markov chain Monte Carlo methods. The copolymer is composed of alternating blocks of A and B monomers, and the adsorbing surface is composed of alternating square blocks containing C and D sites. Effects of interaction specificity on the adsorbed pattern of the copolymer and the sharpness of the adsorption transition are investigated by comparing three different models of copolymer-surface interactions. Analyses of the underlying energy distribution indicate that adsorption transitions in our models are not two-state-like. We show how the corresponding experimental question may be addressed by calorimetric measurements as have been applied to protein folding. Although the adsorption transitions are not "first order" or two-state-like, the sharpness of the transition increases when interaction specificity is enhanced by either including more attractive interaction types or by introducing repulsive interactions. Uniformity of the pattern of the adsorbed copolymer is also sensitive to the interaction scheme. Ramifications of the results from the present minimalist models of pattern recognition on the energetic and statistical mechanical origins of undesirable nonspecific adsorption of synthetic biopolymers in cellular environments are discussed.  相似文献   

17.
We analytically examine the time-dependent adsorption of analyte (solute) on a finite-sized adsorption region as a model for sensors utilizing patterned or heterogeneous surfaces. We account for both reversible adsorption (assuming first-order reaction) and saturation of the adsorption patch that may arise either from packing constraints (finite area) or because of a finite number of binding sites (ligands). Our main conclusions include the following: (1) Saturation effects, due to either finite patch size or finite number of binding sites, become significant at extremely short times. (2) Increasing the strength of binding between the analyte and the adsorption sites increases the adsorbed amount at short times, but, at long times, the mass adsorbed on a weakly binding patch is higher than that on a strongly binding one. (3) The sensitivity of detection, as defined by the adsorption of the minimal analyte mass required for signaling, over a fixed period of time, does not scale as 1/detection time. As a result, increasing the time over which adsorption occurs increases sensitivity, but not linearly. Sensitivity of detection also increases with increasing patch area and initial binding strength.  相似文献   

18.
We report the robust attachment of glycosaminoglycans (GAGs) on silanized glass surfaces. Depositions were performed both by immersion and by application of a pattern by means of microcontact printing. Immunofluorescence assays were performed to verify the deposition and the quality of the patterns. In addition, AFM studies of the coated surfaces were performed in order to study some physical characteristics of the deposited GAGs layers. These results may prove useful for the characterization of the mechanical properties of GAGs in the glycocalyx and its relation with cellular migration.  相似文献   

19.
The layer-by-layer assembly of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) is studied on templates with imprinted arrays of microwells ranging from 2 to 25 μm and different aspect ratios. The thickness and microstructure of polyelectrolyte multilayers (PEMs) are measured using scanning electron microscopy. At 0.2 M ionic strength, the PEM film evenly coats the template both inside and outside the microwells. If the film is thinner than the critical value of about 400 nm, PEM microstructures collapse upon dissolving the template. Euler's model of critical stress is used to describe the collapse. At 2 M ionic strength, a substantially thinner PEM film is assembled inside the 25 μm wells than outside. If the well diameter is reduced to 7 and 2 μm, a much thicker PEM film is formed inside the microwells. These observations have been attributed to the changing of polyelectrolyte conformation in the solutions.  相似文献   

20.
Signal-directed sequential assembly of biomolecules on patterned surfaces   总被引:1,自引:0,他引:1  
The signal-guided and sequential assembly of biomolecules onto patterned surfaces is demonstrated. Readily transmittable electric signals are used to guide spatially selective deposition of the pH-responsive polysaccharide, chitosan, and functionalized chitosan conjugates, by generating localized pH gradients. The nucleophilic primary amine groups of chitosan enable facile conjugation of proteins and nucleic acids by two approaches, one an enzymatic approach and the other a standard chemical modification, thus providing flexibility when sequentially assembling biomolecules in a spatially selective manner. Moreover, we developed an agarose gel "biomask" for the sequential assembly of single-stranded DNA and confirmed its functionality through nucleic acid hybridization assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号