首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of (NH(4))(2)Mo(2)O(7)·2H(2)O with polyhydroxy phenols (catechol or 2,3-dihydroxynaphthalene) and ethylenediamine (en), trimethylenediamine (tn), 1,2-propanediamine (pn), triethylamine (Et(3)N) respectively, in the mixed-solvent of MeCN-EtOH-amine, have resulted in five molybdenum(VI) complexes, (enH(2))[Mo(VI)O(3)(cat)(en)] (1), (tnH(2))[Mo(VI)O(3)(cat)(tn)] (2), (enH)(2)[Mo(VI)O(2)(cat)(2)](en)(0.5) (3), (pnH(2))(2)[Mo(VI)O(2)(cat)(2)] (4) and (HNEt(3))(2)[Mo(VI)O(2)(C(10)H(8)O(2))(2)] (5), of which the structural features were investigated by X-ray diffraction. MTT assay tests indicated that their inhibition ratios against human cancer cells decreased in the order: (1) ≈ (2) > (3) ≈ (4) > (5), i.e. the activities decreased when the chelation number or the size of the aromatic ligand increased, which was consistent with the Gibbs free energies (ΔG) determined from theoretical computations by Gaussian 03. The mechanisms behind this trend were discussed preliminarily.  相似文献   

2.
Novel Calix[4]arene Complexes of Tetravalent Molybdenum The reaction of ptert.‐Butylcalix[4]aren Cax(OH)4 with [Mo(NMe2)4] in equimolar amounts at 80°C in toluene affords after extraction into acetonitrile a mixture of [CaxO4Mo(NHMe2)(NCMe)] ( 1(NCMe) ) and [(CaxO4Mo)2(NCMe)2] ( 2(NCMe)2 ). If the same reaction is carried out in acetonitrile or in mixtures of toluene and acetonitrile instead of toluene, the formation of 2(NCMe)2 is suppressed and only 1(NCMe) has been isolated. Both compounds have been characterized by X ray crystal structure determinations. 1(NCMe) : space group: C2/c, lattice constants: a = 37, 987(8)Å, b = 13, 012(3)Å, c = 20, 271(4)Å, β = 103, 39°; 2(NCMe)2 : space group: P21/n, lattice constants: a = 11, 937(2)Å, b = 21, 078(4)Å, c = 19, 620(4)Å, β = 107, 31(3)°. The molybdenum atom in 1(NCMe) is coordinated with four oxygen atoms of the calix[4]arene ligand, a nitrogen atom of the amine ligand, and the nitrogen atom of the endohedrally coordinated acetonitrile molecule in a slightly distorted octahedron. Two of these monomer units are linked via hydrogen bridges. In 2(NCMe)2 two complex fragments [CaxO4Mo(NCMe)] are linked via phenolate units of the calix[4]arene. The Mo‐Mo′ distance of 261.2(1)pm is in accordance with a Mo‐Mo double bond. EH‐, DFT‐, und MP2‐ calculations have been performed on model complexes [CaxO4Mo(NH3)(NCH)] ( 1′(NCH) ) and [(p‐H‐CaxO4Mo)2(NCH)2] ( 2′(NCH)2 ) for a closer inspection of the binding in these compounds. The results of the calculations suggest that addition of the electron rich, basic oxygen atom is the structure determining feature of 2′(NCH)2 and not a metal metal bond.  相似文献   

3.
An unusual disproportionation reaction of the molybdenum(IV) and tungsten(IV) chlorides [MCl4L2] (M=Mo, L=Et2S, Et2O; M=W; L= Et2S) in the presence of p-tBu-calix[4]arene (Cax(OH)4) and triethylamine leads to d0 complexes [(CaxO4)[CaxO2(OH)2]M] (1) and d3 compounds (HNEt3)2[(CaxO4)2M2] (2). Complexes la (M = Mo), 1b (M = W), and the HCl adduct of 2a (M = Mo) have been structurally characterized. Compound 1a represents one of the few examples of a well-characterized molybdenum(VI) hexa-alkoxide complex of the type [Mo(OR)6]. Isolation and structural characterization of the side product [(CaxO4W)[kappa2(O)-kappa1(O)-CaxO3(OH)](CaxO4WCl)] (3) suggests the intermediacy of chloro-containing calix[4]arene complexes in these reaction mixtures. The reaction of 1a with HCI provides [CaxO4MoCl2] (4a), the first well-defined example of a mixed molybdenum(VI) alkoxide halide compound of the general formula [MoClx(OR)6-x].  相似文献   

4.
A new synthetic pathway to Chatt-type Mo(0) and W(0) bis(dinitrogen) complexes with the ligand prP(4) is presented (prP(4) is a linear tetraphos ligand with two ethylene bridges and a central propylene bridge). The synthesis starts from MoCl(5) and WCl(6), respectively, employing Mg as reductant. Whereas the electrochemical reduction of the oxido-iodido-molybdenum(IV) complex [Mo(O)I(meso-prP(4)](+) (1) only gave trans-[Mo(N(2))(2)(meso-prP(4))] (2a; R?mer et al., Eur. J. Inorg. Chem.2008, 3258), the direct synthesis under normal conditions affords both trans and cis complexes 2a and 2b. The reaction products are characterised by vibrational and NMR spectroscopy. Moreover, a single-crystal X-ray structure determination of cis-α-[Mo(N(2))(2)(rac-prP(4))] (2b) is performed. In contrast to the trans bis(dinitrogen)molybdenum(0) complex 2a supported by the meso prP(4) ligand the corresponding cis-complex is exclusively coordinated by the rac isomer of prP(4). The reactivity of 2 with acids is investigated as well, leading to the NNH(2) complex [MoF(NNH(2))(meso-prP(4))]BF(4) (15). Analogous results are obtained with the tungsten complexes.  相似文献   

5.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

6.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

7.
Reaction of TiCl(2)(Me(2)Calix) with 2 equiv of LiNHNRR' afforded the corresponding terminal hydrazido(2-) complexes Ti(NNRR')(Me(2)Calix) (R = Ph, R' = Ph (1) or Me; R = R' = Me (3)) which were all structurally characterized. The X-ray structure of Ph(2)NNH(2) is reported for comparison. Compound 1 was also prepared from Na(2)[Me(2)Calix] and Ti(NNPh(2))Cl(2)(py)(3). Reaction of ZrCl(2)(Me(2)Calix) with 2 equiv of LiNHNR(2) afforded only the bis(hydrazido(1-)) complexes Zr(NHNR(2))(2)(Me(2)Calix) (R = Ph or Me). Treatment of Ti(NNMe(2))(Me(2)Calix) (3) with MeI gave the zwitterionic hydrazidium species Ti(NNMe(3))(MeCalix) (6) via a net isomerization reaction which was found to be catalytic in MeI. The corresponding reaction of 3 with CD(3)I gave Ti(NNMe(2)CD(3))(MeCalix) (6-d(3)) with concomitant elimination of MeI. Reaction of 3 with 1 equiv of MeOTf gave [Ti(NNMe(3))(Me(2)Calix)][OTf] (7-OTf) which in turn reacted with (n)Bu(4)NI to form 6 and MeI. Addition of PhCHO to 3 gave the mu-oxo dimer [Ti(mu-O)(Me(2)Calix)](2) and benzaldehyde-dimethylhydrazone. Reaction of either 3 or 6 with (t)BuNCO gave the zwitterionic species Ti{(t)BuNC(NNMe(3))O}(MeCalix) (10) which has been crystallographically characterized. Compound 10 is the formal product of insertion of an isocyanate into the Ti=N(alpha) bond of a titanium hydrazide or hydrazidium species (Me(2)Calix or MeCalix = dianion or trianion of the di- or monomethyl ether of p-tert-butyl calix[4]arene, respectively).  相似文献   

8.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

9.
Tridentate (L(3)) and bidentate (L(2)) poly(pyrazolyl)methane ligands (Gn-dend)OCH(2)C(pz)(3) (1-4) and (Gn-dend)CH(3,5-Me(2)pz)(2) (pz = pyrazol-1-yl) have been used to synthesize the molybdenum(0) complexes [Mo(CO)(3)(L(3))] (G0-G3, 5-8), [Mo(CO)(4)(L(2))] (G0-G1, 13-14), and [Mo(CO)(3)(NCMe)(L(2))] (G0, 15), and the molybdenum(VI) complexes [MoCl(2)O(2)(L(2))] (9-12). The G0-G3 prefixes represent the generation of poly(aryl ether) dendrons in which the metal complexes are embedded. The molecular structures of compounds 13 and 15 have been determined by X-ray diffraction studies and the hydrodynamic radii of tricarbonyl complexes 5-8 calculated by diffusion-ordered NMR spectroscopy (DOSY). Molybdenum(VI) compounds 9-12 have also been evaluated as catalysts for olefin epoxidation, showing comparable but inferior performances than ligand-free MoCl(2)O(2), probably because of the labile coordination of L(2).  相似文献   

10.
The monomer molybdenum(VI) complex [MoO(2)(napoxlhH(2))].2H(2)O (1) has been synthesized from the reaction of MoO(2)(acac)(2) with bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (napoxlhH(4)) in 1:1 molar ratio in ethanol under reflux. This complex on reaction with pyridine/3-picoline/4-picoline yielded the dimer molybdenum(VI) complexes [Mo(2)O(4)(napoxlhH(2))(2)(A)(2)].2H(2)O (A=py (2), 3-pic (3), 4-pic (4)), whereas reaction with isonicotinoylhydrazine (inhH(3)) and salicyloylhydrazine (sylshH(3)) lead to the reduction of the metal centre yielding monomeric molybdenum(V) complexes [Mo(napoxlhH(2))(hzid)].2H(2)O (where hzidH(3)=inhH(3) (5) and sylshH(3) (6)). The complexes have been characterized by elemental analyses, molecular weight determinations, molar conductance data, magnetic moment data, electronic, IR, ESR and (1)H NMR spectroscopic studies. The complexes (5) and (6) are paramagnetic to the extent of one unpaired electron. The electronic spectra of the complexes are dominated by strong charge transfer bands. In all of the complexes, the principal dihydrazone ligand has been suggested to coordinate to the metal centres in the anti-cis-configuration. The complexes (1), (5) and (6) are suggested to have six-coordinate octahedral stereochemistry around molybdenum(VI) and molybdenum(V) metal centres, respectively, while the complexes (2)-(4) are suggested to have eight coordinate dodecahedral stereochemistry around molybdenum(VI) metal centre.  相似文献   

11.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

12.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

13.
Molybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(η(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(η(3)-methallyl)(CO)(2)(pypzH)], [MI(2)(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(η(3)-allyl)(CO)(2)(μ(2)-pypz)}](2) or [cis-{Mo(η(3)-methallyl)(CO)(2)(μ(2)-pypz)}](2) (μ(2)-pypz = μ(2)-3-(2-pyridyl-κ(1)N)pyrazolate-2κ(1)N). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.  相似文献   

14.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

15.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

16.
Reaction of VO(acac)(2) with 1,2-dithiols in the presence of triethylamine gives pentacoordinate oxovanadium complexes [HNEt(3)](2)[VO(bdt)(2)] (1), [HNEt(3)](2)[VO(tdt)(2)] (2), and [HNEt(3)](2)[VO(bdtCl(2))(2)] (3) (where H(2)bdt = 1,2-benzenedithiol, H(2)tdt = 3,4-toluenedithiol, and H(2)bdtCl(2) = 3,6-dichloro-1,2-benzenedithiol). Compounds 1-3 have been characterized by IR, UV/visible, EPR, and mass spectroscopies. The X-ray crystal stuctures of 1 and 2 show hydrogen-bonding interactions between the terminal oxo atom and triethylammonium counterions and between ligand sulfur atoms and the counterions. These interactions are comparable with those found at the active sites of mononuclear molybdenum enzymes.  相似文献   

17.
The long diphosphine 5,11-diphenylphosphanyl-25,26-dipropyloxy-27,28-bis(2-propenyloxy) calix[4]arene (cone) (5), in which the two phosphorus atoms are separated by a semi-rigid linking unit, was prepared in four steps starting from calix[4]arene. Reaction of 5 with AuCl(SEt(2)) or [RuCl(2)(p-cymene)](2) led to calixarenes bearing two metallated pendant arms, [5·(AuCl)(2)] and [5·{RuCl(2)(p-cymene)}(2)], respectively. In the presence of AgBF(4) or [Ni(C(5)H(5))(1,5-cyclooctadiene)]BF(4), diphosphine 5 displayed a marked tendency to form oligomeric material, but under high dilution conditions dimeric species were obtained selectively. The inability of 5 to form chelate complexes was further illustrated by its reaction with [PdCl(2)(1,5-cyclooctadiene)(2)], which led quantitatively to a rare complex in which a diphosphine spans across the dinuclear [PdCl(μ-Cl)(2)PdCl] unit.  相似文献   

18.
The complex [MoO(2)Cl{HC(3,5-Me(2)pz)(3)}]BF(4) (1) (HC(3,5-Me(2)pz)(3) = tris(3,5-dimethyl-1-pyrazolyl)methane) has been prepared and examined as a catalyst for epoxidation of olefins at 55 °C using tert-butyl hydroperoxide (TBHP) as the oxidant. For reaction of cis-cyclooctene, epoxycyclooctane is obtained quantitatively within 5 h when water is rigorously excluded from the reaction mixture. Increasing amounts of water in the reaction mixture lead to lower activities (without affecting product selectivity) and transformation of 1 into the trioxidomolybdenum(VI) complex [{HC(3,5-Me(2)pz)(3)}MoO(3)] (4). Complex 4 was isolated as a microcrystalline solid by refluxing a suspension of 1 in water. The powder X-ray diffraction pattern of 4 can be indexed in the orthorhombic Pnma system, with a = 16.7349(5) ?, b = 13.6380(4) ?, and c = 7.8513(3) ?. Treatment of 1 in dichloromethane with excess TBHP led to isolation of the symmetrical [Mo(2)O(4)(μ(2)-O){HC(3,5-Me(2)pz)(3)}(2)](BF(4))(2) (2) and unsymmetrical [Mo(2)O(3)(O(2))(2)(μ(2)-O)(H(2)O){HC(3,5-Me(2)pz)(3)}] (3) oxido-bridged dimers, which were characterized by single-crystal X-ray diffraction. Complex 2 displays the well-known (Mo(2)O(5))(2+) bridging structure where each dioxidomolybdenum(VI) center is coordinated to three N atoms of the organic ligand and one μ(2)-bridging O atom. The unusual complex 3 comprises dioxido and oxidodiperoxo molybdenum(VI) centers linked by a μ(2)-bridging O atom, with the former center being coordinated to the tridentate N-ligand. The dinuclear complexes exhibit a similar catalytic performance to that found for mononuclear 1. For complexes 1 and 2 use of the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate and N-butyl-3-methylpyridinium tetrafluoroborate as solvents allowed the complexes to be completely dissolved, and in each case the catalyst and IL could be recycled and reused without loss of activity.  相似文献   

19.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

20.
A stepwise reaction of p-tert-butylthiacalix[4]arene (TC4A-(OH)(4)) with [CpTiCl3]-NEt(3) and cis-[Mo(N(2))(2)(PMe(2)Ph)(4)] afforded a new Ti-Mo heterobimetallic complex [TC4A-(O)(4)Ti(micro2-C(5)H(5))MoH(PMe(2)Ph)(2)] which shows an unusual alpha-agostic micro2-eta5:eta2-coordination of a cyclopentadienyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号