首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the boundedness of all solutions of the nonlinear equation (?p(x′))′+(p-1)[α?p(x+)−β?p(x)]+f(x)+g(x)=e(t) is discussed, where e(t)∈C7 is 2πp-periodic, f,g are bounded C6 functions, ?p(u)=∣u∣p−2u, p?2,α,β are positive constants, x+=max{x,0},x=max{−x,0}.  相似文献   

2.
In this paper, we study the behavior of solutions of second order delay differential equation
y(t)=p1y(t)+p2y(tτ)+q1y(t)+q2y(tτ),  相似文献   

3.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the first order neutral functional differential equation of the form
(x(t)+Bx(tδ))=g1(t,x(t))+g2(t,x(tτ))+p(t).  相似文献   

4.
In this paper, we prove the following result: Let f(z) and g(z) be two nonconstant meromorphic(entire) functions, n ≥ 11(n ≥ 6) a positive integer. If fn(z)f′(z) and gn(z)g′(z) have the same fixed-points, then either f(z) = c1ecz2g(z) = c2e− cz2, where c1c2, and c are three constants satisfying 4(c1c2)n + 1c2 = −1, or f(z) ≡ tg(z) for a constant t such that tn + 1 = 1.  相似文献   

5.
Both one-dimensional two-phase Stefan problem with the thermodynamic equilibrium condition u(R(t),t)=0 and with the kinetic rule uε(Rε(t),t)=εRε′(t) at the moving boundary are considered. We prove, when ε approaches zero, Rε(t) converges to R(t) in C1+δ/2[0,T] for any finite T>0, 0<δ<1.  相似文献   

6.
We prove that the operator G, the closure of the first-order differential operator −d/dt+D(t) on L2(R,X), is Fredholm if and only if the not well-posed equation u(t)=D(t)u(t), tR, has exponential dichotomies on R+ and R and the ranges of the dichotomy projections form a Fredholm pair; moreover, the index of this pair is equal to the Fredholm index of G. Here X is a Hilbert space, D(t)=A+B(t), A is the generator of a bi-semigroup, B(⋅) is a bounded piecewise strongly continuous operator-valued function. Also, we prove some perturbations results and consider various examples of not well-posed problems.  相似文献   

7.
We give a constructive proof of existence to oscillatory solutions for the differential equations x(t)+a(t)λ|x(t)|sign[x(t)]=e(t), where t?t0?1 and λ>1, that decay to 0 when t→+∞ as O(tμ) for μ>0 as close as desired to the “critical quantity” . For this class of equations, we have limt→+∞E(t)=0, where E(t)<0 and E(t)=e(t) throughout [t0,+∞). We also establish that for any μ>μ? and any negative-valued E(t)=o(tμ) as t→+∞ the differential equation has a negative-valued solution decaying to 0 at + ∞ as o(tμ). In this way, we are not in the reach of any of the developments from the recent paper [C.H. Ou, J.S.W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001) 722-732].  相似文献   

8.
In this paper, a higher order p-Laplacian neutral functional differential equation with a deviating argument:
[φp([x(t)−c(t)x(tσ)](n))](m)+f(x(t))x(t)+g(t,x(tτ(t)))=e(t)  相似文献   

9.
By using fixed point theorem, we study the following equation g(u(t))+a(t)f(u)=0 subject to boundary conditions, where g(v)=|v|p−2v with p>1; the existence of at least three positive solutions is proved.  相似文献   

10.
The unstable properties of the null solution of the nonautonomous delay system x′(t)=A(t)x(t)+B(t)x(tr1(t))+f(t,x(t),x(tr2(t))) are examined; the nonconstant delays r1, r2 are assumed to be continuous bounded functions. The case A=constant is reviewed, where a theorem, recalling the Perron instability theorem for ordinary differential equations, is obtained.  相似文献   

11.
In this paper, we consider the fourth-order Neumann boundary value problem u(4)(t)−2u(t)+u(t)=f(t,u(t)) for all t∈[0,1] and subject to u(0)=u(1)=u?(0)=u?(1)=0. Using the fixed point index and the critical group, we establish the existence theorem of solutions that guarantees the problem has at least one positive solution and two sign-changing solutions under certain conditions.  相似文献   

12.
In this paper, a Galerkin type algorithm is given for the numerical solution of L(x)=(r(t)x'(t))'-p(t)x(t)=g(t); x(a)=xa, x'(a)=x'a, where r (t)>f0, and Spline hat functions form the approximating basis. Using the related quadratic form, a two-step difference equation is derived for the numerical solutions. A discrete Gronwall type lemma is then used to show that the error at the node points satisfies ek=0(h2). If e(t) is the error function on a?t?b; it is also shown (in a variety of norms) that e(t)?Ch2 and e'(t)?C1h. Test case runs are also included. A (one step) Richardson or Rhomberg type procedure is used to show that eRk=0(h4). Thus our results are comparable to Runge-Kutta with half the function evaluations.  相似文献   

13.
By using the theory of coincidence degree, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with deviating arguments such as (φp(x(t)−cx(tσ)))+g(t,x(tτ(t)))=p(t), a result on the existence of periodic solutions is obtained.  相似文献   

14.
We consider the existence of positive ω-periodic solutions for the equation
u(t)=a(t)g(u(t))u(t)−λb(t)f(u(tτ(t))),  相似文献   

15.
Using spectral theory we obtain sufficient conditions for the almost automorphy of bounded solutions to differential equations with piecewise constant argument of the form x(t)=A(t)x([t])+f(t),tR, where A(t) is an almost automorphy operator, f(t) is an X-valued almost automorphic function and X is a finite dimensional Banach space.  相似文献   

16.
Let G=(V,E) be a graph with δ(G)≥1. A set DV is a paired dominating set if D is dominating, and the induced subgraph 〈D〉 contains a perfect matching. The paired domination number of G, denoted by γp(G), is the minimum cardinality of a paired dominating set of G. The paired bondage number, denoted by bp(G), is the minimum cardinality among all sets of edges EE such that δ(GE)≥1 and γp(GE)>γp(G). We say that G is a γp-strongly stable graph if, for all EE, either γp(GE)=γp(G) or δ(GE)=0. We discuss the basic properties of paired bondage and give a constructive characterization of γp-strongly stable trees.  相似文献   

17.
This paper focuses on the decomposition, by numerical methods, of solutions to mixed-type functional differential equations (MFDEs) into sums of “forward” solutions and “backward” solutions. We consider equations of the form x(t)=ax(t)+bx(t−1)+cx(t+1) and develop a numerical approach, using a central difference approximation, which leads to the desired decomposition and propagation of the solution. We include illustrative examples to demonstrate the success of our method, along with an indication of its current limitations.  相似文献   

18.
19.
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the three point boundary value problem, (g(u′))′+a(t)f(u)=0, u(0)=0, and u(ν)=u(1), where g(v)=|v|p−2v, with p>1 and ν∈(0,1).  相似文献   

20.
We consider bilinear control systems of the form y(t)=Ay(t)+u(t)By(t) where A generates a strongly continuous semigroup of contraction (etA)t?0 on an infinite-dimensional Hilbert space Y whose scalar product is denoted by 〈.,.〉. We suppose that this system is unbounded in the sense that the linear operator B is unbounded from the state Y into itself. Tacking into account eventual control saturation, we study the problem of stabilization by (possibly nonquadratic) feedback of the form u(t)=−f(〈By(t),y(t)〉). Applications to the heat equation is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号