首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Awrejcewicz  J.  Kudra  G.  Lamarque  C.-H. 《Meccanica》2003,38(6):687-698
This report is a part of the larger project of non-linear dynamics investigation of three coupled physical pendulums with damping and with arbitrary situated barriers, and externally driven. The set of differential equations and the set of algebraic inequalities (representing a barrier) governing the motion of three coupled rods are presented in the non-dimensional form. The system of governing equations is integrated between two successive impacts, and the discontinuity points are detected (by halving time step until a required precision is obtained). In each impact time, the state of the system is transformed using the extended restitution coefficient rule. The theory of Aizerman and Gantmakher is used to calculate the fundamental solution matrices in the analyzed system exhibiting discontinuities. The fundamental matrices are used during calculation of Lyapunov exponents, during stability analysis of periodic solutions (Floquet multipliers) and in shooting method applied to detect and trace periodic orbits. Some examples for three coupled identical rods with horizontal barrier are reported.  相似文献   

2.
We give a complete bifurcation and stability analysis for the relative equilibria of the dynamics of three coupled planar rigid bodies. We also use the equivariant Weinstein-Moser theorem to show the existence of two periodic orbits distinguished by symmetry type near the stable equilibrium. Finally we prove that the dynamics is chaotic in the sense of Poincaré-Birkhoff-Smale horseshoes using the version of Melnikov's method suitable for systems with symmetry due to Holmes and Marsden.  相似文献   

3.
This paper deals with a model for repeated impacts of a massattached to a spring with a massive, sinusoidally vibrating table. Thismodel has been studied in an attempt to understand the cantilever-sampledynamics in atomic force microscopy. In this work, we have shown thatfor some values of the frequency of the vibrating table, there arecountably many orbits of arbitrarily long periods and the system issensitive to the initial conditions with which the experiments areconducted. We have also shown existence of complex dynamics in the caseswhen the natural frequency of the spring-mass system is very low; andwhen it is the same as the oscillating frequency of the table.  相似文献   

4.
We investigate the dynamics of a simple pendulum coupled to a horizontal mass?Cspring system. The spring is assumed to have a very large stiffness value such that the natural frequency of the mass?Cspring oscillator, when uncoupled from the pendulum, is an order of magnitude larger than that of the oscillations of the pendulum. The leading order dynamics of the autonomous coupled system is studied using the method of Direct Partition of Motion (DPM), in conjunction with a rescaling of fast time in a manner that is inspired by the WKB method. We particularly study the motions in which the amplitude of the motion of the harmonic oscillator is an order of magnitude smaller than that of the pendulum. In this regime, a pitchfork bifurcation of periodic orbits is found to occur for energy values larger that a critical value. The bifurcation gives rise to nonlocal periodic and quasi-periodic orbits in which the pendulum oscillates about an angle between zero and ??/2 from the down right position. The bifurcating periodic orbits are nonlinear normal modes of the coupled system and correspond to fixed points of a Poincare map. An approximate expression for the value of the new fixed points of the map is obtained. These formal analytic results are confirmed by comparison with numerical integration.  相似文献   

5.
We analyse the dynamics of two identical Josephson junctions coupled through a purely capacitive load in the neighborhood of a degenerate symmetric homoclinic orbit. A bifurcation function is obtained applying Lin's version of the Lyapunov–Schmidt reduction. We locate in parameter space the region of existence of n-periodic orbits, and we prove the existence of n-homoclinic orbits and bounded nonperiodic orbits. A singular limit of the bifurcation function yields a one-dimensional mapping which is analyzed. Numerical computations of nonsymmetric homoclinic orbits have been performed, and we show the relevance of these computations by comparing the results with the analysis.  相似文献   

6.
We consider a system composed of two masses connected by linear springs. One of the masses is in contact with a driving belt moving at a constant velocity. Friction force, with Coulomb??s characteristics, acts between the mass and the belt. Moreover, the mass is also subjected to a harmonic external force. Several periodic orbits including stick phases and slip phases are obtained. In particular, the existence of periodic orbits including a part where the mass in contact with the belt moves in the same direction at a higher speed than the belt itself is proved. Non-sticking orbits are also found for a non-moving belt. We prove that this kind of solution is symmetric in space and in time.  相似文献   

7.
The dynamics of a non-linear electro-magneto-mechanical coupled system is addressed. The non-linear behavior arises from the involved coupling quadratic non-linearities and it is explored by relying on both analytical and numerical tools. When the linear frequency of the circuit is larger than that of the mechanical oscillator, the dynamics exhibits slow and fast time scales. Therefore the mechanical oscillator forced (actuated) via harmonic voltage excitation of the electric circuit is analyzed; when the forcing frequency is close to that of the mechanical oscillator, the long term damped dynamics evolves in a purely slow timescale with no interaction with the fast time scale. We show this by assuming the existence of a slow invariant manifold (SIM), computing it analytically, and verifying its existence via numerical experiments on both full- and reduced-order systems. In specific regions of the space of forcing parameters, the SIM is a complicated geometric object as it undergoes folding giving rise to hysteresis mechanisms which create a pronounced non-linear resonance phenomenon. Eventually, the roles played by the electro-magnetic and mechanical components in the resulting complex response, encompassing bifurcations as well as possible transitions from regular to chaotic motion, are highlighted by means of Poincaré sections.  相似文献   

8.
We study the dynamics of a system of coupled linear oscillators with a multi-DOF end attachment with essential (nonlinearizable) stiffness nonlinearities. We show numerically that the multi-DOF attachment can passively absorb broadband energy from the linear system in a one-way, irreversible fashion, acting in essence as nonlinear energy sink (NES). Strong passive targeted energy transfer from the linear to the nonlinear subsystem is possible over wide frequency and energy ranges. In an effort to study the dynamics of the coupled system of oscillators, we study numerically and analytically the periodic orbits of the corresponding undamped and unforced hamiltonian system with asymptotics and reduction. We prove the existence of a family of countable infinity of periodic orbits that result from combined parametric and external resonance interactions of the masses of the NES. We numerically demonstrate that the topological structure of the periodic orbits in the frequency–energy plane of the hamiltonian system greatly influences the strength of targeted energy transfer in the damped system and, to a great extent, governs the overall transient damped dynamics. This work may be regarded as a contribution towards proving the efficacy the utilizing essentially nonlinear attachments as passive broadband boundary controllers. PACS numbers: 05.45.Xt, 02.30.Hq  相似文献   

9.
Epureanu  B. I.  Dowell  E. H. 《Nonlinear dynamics》2003,31(2):151-166
An alternate approach to the standard harmonic balance method (based on Fourier transforms) is proposed. The proposed method begins with an idea similar to the harmonic balance method, i.e. to transform the initial set of differential equations of the dynamics to a set of discrete algebraic equations. However, as distinct from previous harmonic balance techniques, the proposed method uses a set of basis functions which are localized in time and are not necessarily sinusoidal. Also as distinct from previous harmonic balance methods, the algebraic equations obtained after the transformation of the differential equations of the dynamics are solved in the time domain rather than the frequency domain. Numerical examples are provided to demonstrate the performance of the method for autonomous and forced dynamics of a Van der Pol oscillator.  相似文献   

10.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

11.
两自由度塑性碰撞振动系统的动力学研究   总被引:6,自引:0,他引:6  
用三维映射表示具有单侧刚性约束的两自由度振动系统在塑性碰撞时的动力学方程。借助理论分析与数值方法研究了系统周期n-1振动的存在性与稳定性,描述了系统周期n-1振动的特点,讨论了碰撞振子与约束擦边引起的Poincare映射奇异性对系统全局分岔的影响。  相似文献   

12.
We consider an autoparametric system consisting of an oscillator coupled with an externally excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in primary resonance. The method of second-order averaging is used to obtain a set of autonomous equations of the second-order approximations to the externally excited system with autoparametric resonance. The Šhilnikov-type homoclinic orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Šhilnikov-type homoclinic orbits in the averaged equations. The results obtained above mean the existence of the amplitude-modulated chaos for the Smale horseshoe sense in the externally excited system with autoparametric resonance. Furthermore, a detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Nine branches of dynamic solutions are found. Two of these branches emerge from two Hopf bifurcations and the other seven are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, intermittency chaos and homoclinic explosions are also observed.  相似文献   

13.
We investigate the nonlinear response of a clamped-clamped buckled beamto a primary-resonance excitation of its first vibration mode. The beamis subjected to an axial force beyond the critical load of the firstbuckling mode and a transverse harmonic excitation. We solve thenonlinear buckling problem to determine the buckled configurations as afunction of the applied axial load. A Galerkin approximation is used todiscretize the nonlinear partial-differential equation governing themotion of the beam about its buckled configuration and obtain a set ofnonlinearly coupled ordinary-differential equations governing the timeevolution of the response. Single- and multi-mode Galerkinapproximations are used. We found out that using a single-modeapproximation leads to quantitative and qualitative errors in the staticand dynamic behaviors. To investigate the global dynamics, we use ashooting method to integrate the discretized equations and obtainperiodic orbits. The stability and bifurcations of the periodic orbitsare investigated using Floquet theory. The obtained theoretical resultsare in good qualitative agreement with the experimental results obtainedby Kreider and Nayfeh (Nonlinear Dynamics 15, 1998, 155–177.  相似文献   

14.
We consider an autoparametric system which consists of an oscillator coupled with a parametrically excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in principal parametric resonance. The system contains the most general type of quadratic and cubic non-linearities. The method of second-order averaging is used to yield a set of autonomous equations of the second-order approximations to the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Shilnikov-type multi-pulse homoclinic orbits in the averaged equations. The results obtained above mean the existence of amplitude-modulated chaos in the Smale horseshoe sense in the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse chaotic motions of the parametric excited system with autoparametric resonance are also found by using numerical simulation.  相似文献   

15.
Periodic and Homoclinic Motions in Forced,Coupled Oscillators   总被引:2,自引:0,他引:2  
Yagasaki  K. 《Nonlinear dynamics》1999,20(4):319-359
We study periodic and homoclinic motions in periodically forced, weakly coupled oscillators with a form of perturbations of two independent planar Hamiltonian systems. First, we extend the subharmonic Melnikov method, and give existence, stability and bifurcation theorems for periodic orbits. Second, we directly apply or modify a version of the homoclinic Melnikov method for orbits homoclinic to two types of periodic orbits. The first type of periodic orbit results from persistence of the unperturbed hyperbolic periodic orbit, and the second type is born out of resonances in the unperturbed invariant manifolds. So we see that some different types of homoclinic motions occur. The relationship between the subharmonic and homoclinic Melnikov theories is also discussed. We apply these theories to the weakly coupled Duffing oscillators.  相似文献   

16.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus.  相似文献   

17.
Li  Yanguang 《Nonlinear dynamics》2003,31(4):393-434
In this paper, we study the discrete cubic nonlinear Schrödinger lattice under Hamiltonian perturbations. First we develop a complete isospectral theory relevant to the hyperbolic structures of the lattice without perturbations. In particular, Bäcklund–Darboux transformations are utilized to generate heteroclinic orbits and Melnikov vectors. Then we give coordinate-expressions for persistent invariant manifolds and Fenichel fibers for the perturbed lattice. Finally based upon the above machinery, existence of codimension 2 transversal homoclinic tubes is established through a Melnikov type calculation and an implicit function argument. We also discuss symbolic dynamics of invariant tubes each of which consists of a doubly infinite sequence of curve segments when the lattice is four dimensional. Structures inside the asymptotic manifolds of the transversal homoclinic tubes are studied, special orbits, in particular homoclinic orbits and heteroclinic orbits when the lattice is four dimensional, are studied.  相似文献   

18.
In this paper, unstable dynamics is considered for the models of vibro-impact systems with linear differential equations coupled to an impact map. To provide a skeleton for the organization of chaotic attractors, we propose a method for detecting unstable periodic orbits embedded in chaotic attractors through a combination of unconstrained optimization technique and Poincaré map. Three numerical examples from different vibro-impact models demonstrate that the strategy can efficiently detect unstable periodic orbits in chaotic attractors. In order to explore the mechanism responsible for the creation of multi-dimensional tori attractors, we also present another method to detect unstable quasiperiodic orbits embedded multi-dimensional tori attractors by examining a specially transient time series. The upper bound and lower bound of the transient time series (in the Poincaré map) can be obtained by analyzing transient Lyapunov exponent and transient Lyapunov dimension. Some examples verify the effectiveness of the numerical algorithm.  相似文献   

19.
In this paper we study the existence of heteroclinic cycles in generic unfoldings of nilpotent singularities. Namely we prove that any nilpotent singularity of codimension four in \mathbbR4{\mathbb{R}^4} unfolds generically a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits to equilibrium points with two pairs of complex eigenvalues. We also prove that any nilpotent singularity of codimension three in \mathbbR3{\mathbb{R}^3} unfolds generically a bifurcation curve of heteroclinic cycles between two saddle-focus equilibrium points with different stability indexes. Under generic assumptions these cycles imply the existence of homoclinic bifurcations. Homoclinic orbits to equilibrium points with complex eigenvalues are the simplest configurations which can explain the existence of complex dynamics as, for instance, strange attractors. The proof of the arising of these dynamics from a singularity is a very useful tool, particularly for applications.  相似文献   

20.
Sine-Gordon方程的截断系统的同宿轨道   总被引:3,自引:0,他引:3  
徐振源  刘曾荣 《力学学报》1998,30(3):292-299
研究Sine Gordon方程的广义渐近惯性流形上的常微分方程组,证实了在一定参数条件下存在Wiggins[1]意义下的同宿轨道.计算表明,与Bishop[2]用数值计算得到的Sine Gordon方程产生混沌的参数值尚有差别,考虑到同宿出现参数值往往低于混沌出现参数值,故结果在定性上正确,而且改进了文[1]中的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号