首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial topological superconductor (TSC). This artificial TSC, first proposed by Fu and Kane in 2008, is a heterostructure made of a topological insulator Bi2Te3 and an s-wave superconductor NbSe2. This paper will briefly review the experimental progresses based on the Bi2Te3/NbSe2 heterostructure. All evidences are self-consistent and reveal that the MZM exists in the center of vortex. Those experimental results are also supported by theory. This finding is a milestone in the research of Majorana fermions in solid state physics and a starting point of MZM’s application in topological quantum computation.  相似文献   

2.
Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is induced on the surface of topological insulators, survive in these doped systems with metallic normal states. Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase of the normal state Fermi surface. By calculating this phase for available band structures we determine that superconducting p-doped Bi(2)Te(3), among others, supports vortex end Majorana modes. Surprisingly, superconductors derived from topologically trivial band structures can support Majorana modes too.  相似文献   

3.
We study the transport of chiral Majorana edge modes (CMEMs) in a hybrid quantum anomalous Hall insulator-topological superconductor (QAHI-TSC) system in which the TSC region contains a Josephson junction and a cavity. The Josephson junction undergoes a topological transition when the magnetic flux through the cavity passes through half-integer multiples of magnetic flux quantum. For the trivial phase, the CMEMs transmit along the QAHI-TSC interface as without magnetic flux. However, for the nontrivial phase, a zero-energy Majorana state appears in the cavity, leading to that a CMEM can resonantly tunnel through the Majorana state to a different CMEM. These findings may provide a feasible scheme to control the transport of CMEMs by using the magnetic flux and the transport pattern can be customized by setting the size of the TSC.  相似文献   

4.
We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.  相似文献   

5.
《中国物理 B》2021,30(10):100302-100302
The spin transport properties are theoretically investigated when a quantum dot(QD) is side-coupled to Majorana bound states(MBSs) driven by a symmetric dipolar spin battery. It is found that MBSs have a great effect on spin transport properties. The peak-to-valley ratio of the spin current decreases as the coupling strength between the MBS and the QD increases. Moreover, a non-zero charge current with two resonance peaks appears in the system. In the extreme case where the dot–MBS coupling strength is strong enough, the spin current and the charge current are both constants in the non-resonance peak range. When considering the effect of the Zeeman energy, it is interesting that the resonance peak at the higher energy appears one shoulder. And the shoulder turns into a peak when the Zeeman energy is big enough. In addition, the coupling strength between the two MBSs weakens their effects on the currents of the system. These results are helpful for understanding the MBSs signature in the transport spectra.  相似文献   

6.
郝宁  胡江平 《物理学报》2018,67(20):207101-207101
铁基超导体和拓扑量子材料是近年来凝聚态物理两个重要的前沿研究方向.铁基超导体中是否能衍生出非平庸的拓扑现象是一个非常有意义的问题.本文从晶体对称性、布里渊区高对称点附近的有效模型以及自旋轨道耦合相互作用三个方面具体分析了铁基超导的电子结构的基本特点.在此基础上,重点阐述铁基超导的正常态、临近超导的长程有序态以及超导态中非平庸的拓扑量子态是如何衍生的;具体介绍了相关的理论模型以及结果,回顾了相关的实验进展,展望了该领域的发展前景.  相似文献   

7.
《Current Applied Physics》2015,15(4):520-527
We present a comprehensive analysis about the transport properties of a quantum dot (QD) system with a side-coupled Majorana zero mode. Our calculation result shows that when the coupling manners between the two leads and QDs are identical, the local Andreev reflection and the interlead normal tunneling have the same magnitude at the zero-bias limit. Accordingly, the zero-bias conductance value is always equal to e2/2h, which is exactly one half of the resonant-tunneling conductance. This result is independent of the level number and the level distribution in the single-QD case, and in the coupled-QD case it is irrelevant to the geometry of the QD molecule. The universal transport property is a powerful evidence for the feasibility to detect the MBSs based on a QD circuit. This result also means that the QD condition is not a key factor to achieve the detection. On the other hand, if the decoupling phenomenon appears, the Majorana zero mode may play a trivial role in contributing to the conductance property.  相似文献   

8.
正Topological phases play an increasingly central role in condensed matter physics[1,2]and fault-tolerant quantum computation[3].The global nature can be characterized by certain topological invariants,many among them can be defined as the integrals of some geometric quantities.A well-known example is the Chern number[4].It is the integral of Berry curvature over a surface without boundary and is thus closely related to Berry phase[5].The integer Chern number can be  相似文献   

9.
《Current Applied Physics》2015,15(10):1278-1285
We investigate the electron transport through a quantum dot connected with two ferromagnetic leads, by coupling one Majorana doublet laterally to the quantum dot. It is found that Majorana doublet keeps the value of zero-bias conductance to be independent of the shift of structural parameters, including dot level, relative lead-magnetization direction, and magnetic field on the dot. Even in the cases of asymmetric dot-lead couplings, the zero-bias conductance is weakly dependent on the relative lead-magnetization direction. On the other hand, when Majorana doublet is replaced by Majorana singlet, the zero-bias conductance value becomes sensitive to the structural parameters. Via analyzing the respective particle motion processes, the different influences of Majorana doublet and singlet are explained. We believe that this work can be helpful for understanding the peculiar properties of Majorana doublet.  相似文献   

10.
《中国物理 B》2021,30(7):78505-078505
We present a phase-and spin-dependent manipulation of leakage of a Majorana mode into a double quantum dot. We study the density of states(DOS) to show the effect of phase change factor on the Majorana leakage into(out) of a double quantum dot. The DOS is derived from the Green's function of the quantum dot by the equation of motion method, and exhibits a formant structure when φ = 0, 2π and a resonance shape when φ = 0.5π and 1.5π. Also, it changes more strongly under the spin-polarized coefficient than the non-polarized lead. Such a theoretical model can be modified to explore the spin-dependent effect in the hybrid Majorana quantum dot system.  相似文献   

11.
黄钢明  鲍诚光 《中国物理》2003,12(4):419-425
On the electronic structures of quantum dots, there is a new viewpoint saying that, in some specific states a few electrons might behave as valence electrons moving outside surrounding a core. To clarify the validity of this viewpoint, a numerical calculation was performed in this paper. The results are against this viewpoint.  相似文献   

12.
We study the transport through the Kitaev chain with incommensurate potentials coupled to two normal leads by the numerical operator method. We find a quantized linear conductance of e 2 / h, which is independent to the disorder strength and the gate voltage in a wide range, signaling the Majorana bound states. While the incommensurate potential suppresses the current at finite voltage bias, and then narrows the linear response regime of the I-V curve which exhibits two plateaus corresponding to the superconducting gap and the band edge, respectively. The linear conductance abruptly drops to zero as the disorder strength reaches the critical value 2g s + 2Δ with Δ the p-wave pairing amplitude and g s the hopping between neighbor sites, corresponding to the transition from the topological superconducting phase to the Anderson localized phase. Changing the gate voltage also causes an abrupt drop of the linear conductance by driving the chain into the topologically trivial superconducting phase, whose I-V curve exhibits an exponential shape.  相似文献   

13.
With a series of recent breakthroughs, iron-based superconductors(FeSC) with a topological Dirac surface state are becoming a promising material platform for hosting Majorana zero modes, which we refer to as the iron-Majorana platform. This platform uniquely combines high-Tc superconductivity, a topological band structure, and electron correlations into a single material,successfully avoiding the difficulties of achieving intrinsic p-wave topological superconductors and superconductor...  相似文献   

14.
《Current Applied Physics》2020,20(11):1299-1305
We investigate the crossed Andreev reflection (CAR) through a quantum dot (QD) coupled to topological superconducting single-stranded DNA (ssDNA). It is found that the topological nontrivial states appear in the QD due to leakage of the Majorana zero mode. Majorana zero mode can be identified by measuring the CAR. This device can be used as a Majorana zero mode detector that relies on the system parameters, such as the spin orbit coupling, the twist angle, molecular length. A high efficiency Cooper pair splitter can be realized by regulating the magnitude and direction of the gate voltage. In additions, the signature of CAR is robust against the Coulomb blockade and the disorder induced by distinct amino acids. This work provides an alternative method for detection of Majorana zero mode in ssDNA.  相似文献   

15.
Based on the Green's function method, we investigate the interplay between Majorana zero mode (MZM) and Andreev bound states (ABSs) in a quantum dot molecule side coupled to a topological superconducting nanowire with a pair of MZMs forming a Josephson junction. Since the strong electron–hole asymmetry induced by the nanowire with a topologically non-trivial phase, the MZM suppress the ABSs. The suppression induced by the MZM is robust against the Coulomb repulsion. The interplay between the MZM and the ABSs in Josephson junction presents a feasible experimental means for distinguish between the presence of MZM and ABSs.  相似文献   

16.
We study single-electron-transistor (SET) operation of the quantum dot (QD) in a strong magnetic field under weak illumination of far-infrared (FIR) radiation, which causes cyclotron resonance (CR) excitation inside the QD. We find that the SET conductance resonance is exceedingly sensitive to the FIR: It switches on (off) upon the excitation of just one electron to a higher Landau level inside the QD, whereby enabling us to detect individual events of FIR-photon (hν 6 meV) absorption.  相似文献   

17.
The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.  相似文献   

18.
《中国物理 B》2021,30(9):97401-097401
We investigate the spin-related currents and tunnel magnetoresistance through a quantum dot, which is side-coupled with a Majorana fermion zero mode and two thermal-driven ferromagnetic electrodes. It is found that the interplay of Majorana fermion and electrodes' spin polarization can induce a nonlinear thermal-bias spin current. This interplay also decreases the total magnitude of spin or charge current, in either parallel or antiparallel configuration. In addition, a thermal-driven negative tunnel magnetoresistance is found, which is an unique feature to characterize Majorana fermion.With large temperature difference, a step phenomenon is observed in gate tuned spin-up current. When the coupling between quantum dot and topological superconductor is strong enough, this step will evolve into a linear relation, revealing Majorana fermion's robustness.  相似文献   

19.
《Physics letters. A》2020,384(8):126182
Majorana fermions cannot be found in nature as a free fundamental particle. Nevertheless, in condensed matter systems, they can emerge as a collective excitation. In this work, using functional integration techniques, we calculated the effective potential for emergent Majorana fermions in the Kitaev chain. In this case, we have shown the behavior of the superconductor parameter as a function of temperature. Furthermore, we considered surface-induced superconductivity in a Topological Insulator and calculated the effective potential for emergent Majorana fermions in this system. In the case of an s-wave superconductor, we obtained a gap equation equivalent to that one appearing in a quasi-two-dimensional Dirac electronic system, a candidate to explain high-Tc superconductivity. Finally, for the p-wave superconductor, we have obtained a critical value of the electron-electron interaction in the surface of the Topological Insulator, determining the existence or not of induced superconductivity, a remarkable result to guide experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号