首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perturbed Laplacian matrix of a graph G is defined as DL = D?A, where D is any diagonal matrix and A is a weighted adjacency matrix of G. We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron component for the perturbed Laplacian matrix of a graph and show how its second smallest eigenvalue can be characterized using this definition.  相似文献   

2.
We prove relative versions of the symplectic capping theorem and sufficiency of Giroux’s criterion for Stein fillability and use these to study the 4-genus of knots. More precisely, suppose we have a symplectic 4-manifold X with convex boundary and a symplectic surface Σ in X such that ?Σ is a transverse knot in ?X. In this paper, we prove that there is a closed symplectic 4-manifold Y with a closed symplectic surface S such that (X,Σ) embeds into (Y,S) symplectically. As a consequence we obtain a relative version of the symplectic Thom conjecture. We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in \(\mathbb {S}^{3} \). Further, we give a criterion for quasipositive fibered knots to be strongly quasipositive.  相似文献   

3.
A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D1 and D2 such that A?T = D1AD2, where A?T denotes the transpose of the inverse of A. Denote by J = diag(±1) a diagonal (signature) matrix, each of whose diagonal entries is +1 or ?1. A nonsingular real matrix Q is called J-orthogonal if QTJQ = J. Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation of a J-orthogonal matrix. An investigation into the sign patterns of the J-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the J-orthogonal matrices. Some interesting constructions of certain J-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a J-orthogonal matrix. Sign potentially J-orthogonal conditions are also considered. Some examples and open questions are provided.  相似文献   

4.
Let s 1, ..., s n be arbitrary complex scalars. It is required to construct an n × n normal matrix A such that s i is an eigenvalue of the leading principal submatrix A i , i = 1, 2, ..., n. It is shown that, along with the obvious diagonal solution diag(s 1, ..., s n ), this problem always admits a much more interesting nondiagonal solution A. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix A i is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices A i and A i + 1.  相似文献   

5.
The paper derives and investigates the Jacobi methods for the generalized eigenvalue problem A x = λ B x, where A is a symmetric and B is a symmetric positive definite matrix. The methods first “normalize” B to have the unit diagonal and then maintain that property during the iterative process. The global convergence is proved for all such methods. That result is obtained for the large class of generalized serial strategies from Hari and Begovi? Kova? (Trans. Numer. Anal. (ETNA) 47, 107–147, 2017). Preliminary numerical tests confirm a high relative accuracy of some of those methods, provided that both matrices are positive definite and the spectral condition numbers of Δ A AΔ A and Δ B BΔ B are small, for some nonsingular diagonal matrices Δ A and Δ B .  相似文献   

6.
Let X be a C~1 vector field on a compact boundaryless Riemannian manifold M(dim M≥2),and A a compact invariant set of X.Suppose that A has a hyperbolic splitting,i.e.,T∧M = E~sX E~u with E~s uniformly contracting and E~u uniformly expanding.We prove that if,in addition,A is chain transitive,then the hyperbolic splitting is continuous,i.e.,A is a hyperbolic set.In general,when A is not necessarily chain transitive,the chain recurrent part is a hyperbolic set.Furthermore,we show that if the whole manifold M admits a hyperbolic splitting,then X has no singularity,and the flow is Anosov.  相似文献   

7.
If S is a monoid, the set S×S equipped with componentwise S-action is called the diagonal act of S and is denoted by D(S). We prove the following theorem: the right S-act S n (1≠n∈?) is (principally) weakly flat if and only if \(\prod _{i=1}^{n}A_{i}\) is (principally) weakly flat where A i , 1≤in are (principally) weakly flat right S-acts, if and only if the diagonal act D(S) is (principally) weakly flat. This gives an answer to a conjecture posed by Bulman-Fleming and Gilmour (Semigroup Forum 79:298–314, 2009). Besides, we present a fair characterization of monoids S over which the diagonal act D(S) is (principally) weakly flat and finally, we impose a condition on D(S) in order to make S a left PSF monoid.  相似文献   

8.
Let G = N ? A, where N is a stratified group and A = ? acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian Δ on G. We prove a theorem of Mihlin–Hörmander type for spectral multipliers of Δ. The proof of the theorem hinges on a Calderón–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernel associated to the sub-Laplacian Δ.  相似文献   

9.
Sufficient conditions for a system Ax = r to have an integral solution in the case of a basic matrix A in terms of submatrices and permanents of A are derived. Matrix A in the Chinese remainder theorem is a particular case of a basic matrix. The derivation can be extended to the case where the propositional formula that describes the sign scheme of A is a minimal unsatisfiable CNF.  相似文献   

10.
We prove a stability version of a general result that bounds the permanent of a matrix in terms of its operator norm. More specifically, suppose A is an n × n matrix over C (resp. R), and let P denote the set of n × n matrices over C (resp. R) that can be written as a permutation matrix times a unitary diagonal matrix. Then it is known that the permanent of A satisfies |per(A)| ≤ ||A|| n 2 with equality iff A/||A||2P (where ||A||2 is the operator 2-norm of A). We show a stability version of this result asserting that unless A is very close (in a particular sense) to one of these extremal matrices, its permanent is exponentially smaller (as a function of n) than ||A|| n 2. In particular, for any fixed α, β > 0, we show that |per(A)| is exponentially smaller than ||A|| n 2 unless all but at most αn rows contain entries of modulus at least ||A||2(1?β).  相似文献   

11.
Let A 1 be an Azumaya algebra over a smooth affine symplectic variety X over Spec F p , where p is an odd prime. Let A be a deformation quantization of A 1 over the p-adic integers. In this note we show that for all n ≥ 1, the Hochschild cohomology of A/p n A is isomorphic to the de Rham-Witt complex \(W_{n}{\Omega }^{\ast }_{X}\) of X over \(\mathbb {Z}/p^{n}\mathbb {Z}\). We also compute the center of deformations of certain affine Poisson varieties over F p .  相似文献   

12.
Let Λ={λ 1,…,λ p } be a given set of distinct real numbers. This work deals with the problem of constructing a real matrix A of order n such that each element of Λ is a Pareto eigenvalue of A, that is to say, for all k∈{1,…,p} the complementarity system
$x\geq \mathbf{0}_n,\quad Ax-\lambda_k x\geq \mathbf{0}_n,\quad \langle x, Ax-\lambda_k x\rangle = 0$
admits a nonzero solution x∈? n .
  相似文献   

13.
An error bound for the linear complementarity problem (LCP) when the involved matrices are QN-matrices with positive diagonal entries is presented by Dai et al. (Error bounds for the linear complementarity problem of QN-matrices. Calcolo, 53:647-657, 2016), and there are some limitations to this bound because it involves a parameter. In this paper, for LCP with the involved matrix A being a QN-matrix with positive diagonal entries an alternative bound which depends only on the entries of A is given. Numerical examples are given to show that the new bound is better than that provided by Dai et al. in some cases.  相似文献   

14.
The investigation of the pairs of irreducible characters of the symmetric group S n that have the same set of roots in one of the sets A n and S n ? A n is continued. All such pairs of irreducible characters of the group S n are found in the case when the least of the main diagonal’s lengths of the Young diagrams corresponding to these characters does not exceed 2. Some arguments are obtained for the conjecture that alternating groups A n have no pairs of semiproportional irreducible characters.  相似文献   

15.
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ?n × n, B(·) ∈ ?n × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded and are functionals of an arbitrary nature. It is assumed that there exist k elements \({\alpha _{{i_i}{j_l}}}\left( \cdot \right)\left( {l \in \overline {1,k} } \right)\) of fixed sign above the main diagonal of the matrix A(·), and each of them is the only significant element in its row and column. The other elements above the main diagonal are sufficiently small. It is assumed that m = n ?k, and the elements βij(·) of the matrix B(·) possess the property \(\left| {{\beta _{{i_s}s}}\left( \cdot \right)} \right| = {\beta _0} > 0\;at\;{i_s}\; \in \;\overline {1,n} \backslash \left\{ {{i_1}, \ldots ,{i_k}} \right\}\). The other elements of the matrix B(·) are zero. The positive definite matrix H = {hij} of the following form is constructed. The main diagonal is occupied by the positive numbers hii = hi, \({h_{{i_l}}}_{{j_l}}\, = \,{h_{{j_l}{i_l}}}\, = \, - 0.5\sqrt {{h_{{i_l}}}_{{j_l}}} \,\operatorname{sgn} \,{\alpha _{{i_l}}}_{{j_l}}\left( \cdot \right)\). The other elements of the matrix H are zero. The analysis of the derivative of the Lyapunov function V(x) = x*H–1x yields hi\(\left( {i \in \overline {1,n} } \right)\) and λi ≤ 0 \(\left( {i \in \overline {1,n} } \right)\) such that for S(·) = H?1ΛB(·), Λ = diag(λ1, ..., λn), the system of the considered equations becomes globally exponentially stable. The control is robust with respect to the elements of the matrix A(·).  相似文献   

16.
A large scale nonsymmetric algebraic Riccati equation XCX ? XE ? AX + B = 0 arising in transport theory is considered, where the n × n coefficient matrices B,C are symmetric and low-ranked and A, E are rank one updates of nonsingular diagonal matrices. By introducing a balancing strategy and setting appropriate initial matrices carefully, we can simplify the large-scale structure-preserving doubling algorithm (SDA_ls) for this special equation. We give modified large-scale structure-preserving doubling algorithm, which can reduce the flop count of original SDA_ls by half. Numerical experiments illustrate the effectiveness of our method.  相似文献   

17.
The main result of the paper is the following theorem. Let q be a prime, n a positive integer, and A an elementary abelian group of order q2. Suppose that A acts coprimely on a finite group G and assume that for each \({a \in A^{\#}}\) every element of CG(a) is n-Engel in G. Then the group G is k-Engel for some \({\{n,q\}}\)-bounded number k.  相似文献   

18.
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set {+,?, 0} ({+, 0}, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix A is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of A. Using a correspondence between sign patterns with minimum rank r ≥ 2 and point-hyperplane configurations in Rr?1 and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every d-polytope determines a nonnegative sign pattern with minimum rank d + 1 that has a (d + 1) × (d + 1) triangular submatrix with all diagonal entries positive. It is also shown that there are at most min{3m, 3n} zero entries in any condensed nonnegative m × n sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.  相似文献   

19.
The Khintchine recurrence theorem asserts that in a measure preserving system, for every set A and ε > 0, we have μ(AT?nA) ≥ μ(A)2 ? ε for infinitely many nN. We show that there are systems having underrecurrent sets A, in the sense that the inequality μ(AT?nA) < μ(A)2 holds for every nN. In particular, all ergodic systems of positive entropy have under-recurrent sets. On the other hand, answering a question of V. Bergelson, we show that not all mixing systems have under-recurrent sets. We also study variants of these problems where the previous strict inequality is reversed, and deduce that under-recurrence is a much more rare phenomenon than over-recurrence. Finally, we study related problems pertaining to multiple recurrence and derive some interesting combinatorial consequences.  相似文献   

20.
The minimal logarithmic signature conjecture states that in any finite simple group there are subsets A i , 1 ≤ ik such that the size |A i | of each A i is a prime or 4 and each element of the group has a unique expression as a product \({\prod_{i=1}^k x_i}\) of elements \({x_i \in A_i}\). The conjecture is known to be true for several families of simple groups. In this paper the conjecture is shown to be true for the groups \({\Omega^-_{2m}(q), \Omega^+_{2m}(q)}\), when q is even, by studying the action on suitable spreads in the corresponding projective spaces. It is also shown that the method can be used for the finite symplectic groups. The construction in fact gives cyclic minimal logarithmic signatures in which each A i is of the form \({\{y_i^j \ |\ 0 \leq j < |A_i|\}}\) for some element y i of order ≥ |A i |.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号