首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张晓宇  张丽平  马忠权  刘正新 《物理学报》2016,65(13):138801-138801
利用半导体工艺和器件仿真软件silvaco TCAD(Technology Computer Aided Design),模拟研究了采用硅/硅锗合金(silicon/silicon germanium alloy,Si/Si_(1-x)Ge_x)量子阱结构作为吸收层的薄膜晶体硅异质结太阳电池各项性能.模拟结果显示,长波波段光学吸收随锗含量的增加而增加,而开路电压则因Si_(1-x)Ge_x)层带隙的降低而下降.锗含量为0.25时,短路电流密度的增加补偿了开路电压的衰减,效率提升0.2%.氢化非晶硅/晶体硅(a-Si:H/c-Si)界面空穴密度以及Si_(1-x)Ge_x)量子阱的体空穴载流子浓度制约着空穴费米能级的位置,进而影响到开路电压的大小.随着锗含量增加,a-Si:H/c-Si界面缺陷对开压的影响降低,Si_(1-x)Ge_x)量子阱的体缺陷对开压的影响则相应增加.高效率含Si_(1-x)Ge_x)量子阱结构的硅异质结太阳电池的制备需要a-Si:H/c-Si界面缺陷的良好钝化以及高质量Si_(1-x)Ge_x)量子阱的生长.  相似文献   

2.
吴利华  章晓中  于奕  万蔡华  谭新玉 《物理学报》2011,60(3):37807-037807
使用脉冲激光沉积(PLD)依次沉积氧化铝和碳膜制备了a-C: Fe/AlOx/Si基异质结,研究了其光伏效应及其在太阳能电池上的应用.该太阳能电池在标准日光照射(AM1.5,100 mW/cm2)下,可获得0.33 V的开路电压和4.5 mA/cm2的电流密度,太阳能电池的转换效率为0.35%.通过C-V测量,证明了氧化铝层的引入降低了界面能级数目,增加了界面势垒高度.界面能级数目降低减少了光生载流子在界面复合的 关键词: 光伏效应 非晶碳膜 异质结 氧化铝  相似文献   

3.
Silicon micro-nano pillars are cost-efficiently integrated using twice cesium chloride (CsCl) islands lithography technique and dry etching for solar cell applications. The micro PMMA islands are fabricated by inductively coupled plasma (ICP) dry etching with micro CsCl islands as masks, and the nano CsCl islands with nano sizes then are made on the surface of micro PMMA islands and silicon. By ICP dry etching with the mask of micro PMMA islands and nano CsCl islands, the micro-nano silicon pillars are made and certain height micro pillars are randomly positioned between dense arrays of nano pillars with different morphologies by controlling etching conditions. With 300 nm depth p-n junction detected by secondary-ion mass spectrometry (SIMS), the micro pillars of the diameter about 1 μm form the core–shell p-n junction to maximize utility of p-n junction interface and enable efficient free carrier collection, and the nano tapered pillars of 150 nm diameter are used to decrease reflection by a graded-refractive-index. Compared to single micro or nano pillar arrayed cells, the co-integrated solar cell with micro and nano pillars demonstrates improved photovoltaic characteristic that is a photovoltaic conversion efficiency (PCE) of 15.35 % with a short circuit current density (J sc) of 38.40 mA/cm2 and an open circuit voltage (V oc) of 555.7 mV, which benefits from the advantages of micro-nano pillar structures and can be further improved upon process optimization.  相似文献   

4.
In order to considerable enhancement of the efficiency of silicon solar cells, in this paper, for the first time, we present a new proposal for silicon based tandem solar cells. For investigation of this idea, we have evaluated the characteristics of 3C–SiC/Si crystalline tandem solar cells connected series by a tunneling junction, under air mass 1.5 global irradiance spectrums. A 2D simulation including the effects of surface passivation, back surface field (BSF), and carrier tunneling have been performed to obtain the optical and electrical characteristics of single junction silicon, 3C–SiC, and finally the tandem cells. The obtained data illustrate that the best design parameters considering the experimental limitations can be obtained. High energy conversion efficiency for the proposed structure of 26.09% has been achieved for 3C–SiC/Si tandem structure driven by 20.49% and 17.86% conversion efficiencies of single junction Si and 3C–SiC solar cells, respectively. Our results justifies that the higher conversion efficiency of the Si-based tandem structure compared with 3C–SiC and Si cells stems from enhancement of open circuit voltage and fill factor parameter at the hands of decrease in short circuit current limited by the top 3C–SiC cell.  相似文献   

5.
耿超  郑义  张永哲  严辉 《物理学报》2016,65(7):70201-070201
陷光结构的优化是增加硅薄膜太阳电池光吸收进而提高其效率的关键技术之一. 以硅纳米线阵列为代表的光子晶体微纳陷光结构具有突破传统陷光结构Yablonovith极限的巨大潜力. 通常硅纳米线阵列可以用作太阳电池的增透减反层、轴向p-n结、径向p-n结. 针对以上三种应用, 本文运用有限时域差分(FDTD)法系统研究了硅纳米线阵列在 300-1100 nm 波段的光学特性. 结果表明, 当硅纳米线作为太阳电池的减反层时, 周期P=300 nm, 高度H=1.5 μm, 填充率(FR)为0.282条件下时, 反射率最低为7.9%. 当硅纳米线作为轴向p-n结电池时, P=500 nm, H=1.5 μm, FR=0.55条件下纳米线阵列的吸收效率高达22.3%. 硅纳米线作为径向p-n结电池时, 其光吸收主要依靠纳米线, 硅纳米线P=300 nm, H=6 μm, FR= 0.349 条件下其吸收效率高达32.4%, 进一步提高其高度吸收效率变化不再明显. 此外, 本文还分析了非周期性硅纳米线阵列的光学性质, 与周期性硅纳米线阵列相比, 直径随机分布和位置随机分布的硅纳米线阵列都可以使吸收效率进一步提高, 相比于周期性硅纳米线阵列, 优化后直径随机分布的硅纳米线阵列吸收效率提高了39%, 吸收效率为27.8%. 本文运用FDTD法对硅纳米线阵列的光学特性进行设计与优化, 为硅纳米线阵列在太阳电池中的应用提供了理论支持.  相似文献   

6.
A new tunnel recombination junction is fabricated for n–i–p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p + recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n–i–p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 ·cm 2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage V oc = 1.4 V, which is nearly the sum of the V oc s of the two corresponding single cells, indicating no V oc losses at the tunnel recombination junction.  相似文献   

7.
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current-voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.  相似文献   

8.
A method for determining the deposition depth of a p-n junction is described, which uses comparison of calculated and experimentally measured dependence of short circuit induced current on the energy of bombarding electrons. A formula for induced current is derived with consideration of recombination on the irradiated surface. Calculations are performed to permit study of the character of the short circuit induced current as a function of electron energy in structures with different recombination parameters and different p-n junction deposition depths.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 16–20, August, 1973.  相似文献   

9.
In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (Voc) and short circuit current (Isc) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.  相似文献   

10.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In our studies the absorption, transmittance and reflectance spectra for periodic nanostructures with different parameters were calculated by the FDTD (Finite-Difference Time-Domain) method. It is shown that the proportion of reflected light in periodic structures is smaller than in case of thin films. The experimental results showed the light reflectance in the spectral range of 400–900 nm lower than 1% and it was significantly lower in comparison with surface texturing by pyramids or porous silicon.Silicon nanowires on p-type Si substrate were formed by the Metal-Assisted Chemical Etching method (MacEtch). At solar cells with radial p-n junction formation the thermal diffusion of phosphorus has been used at 790 °C. Such low temperature ensures the formation of an ultra-shallow p-n junction. Investigation of the photoelectrical properties of solar cells was carried out under light illumination with an intensity of 100 mW/cm2. The obtained parameters of NWs' solar cell were Isc = 22 mA/cm2, Uoc = 0.62 V, FF = 0.51 for an overall efficiency η = 7%. The relatively low efficiency of obtained SiNWs solar cells is attributed to the excessive surface recombination at high surface areas of SiNWs and high series resistance.  相似文献   

12.
We present a‐Si:H/µc‐Si:H tandem solar cells on laser textured ZnO:Al front contact layers. Direct pulsed laser interference patterning (DLIP) was used for writing arrays of one‐dimensional micro gratings of submicron period into ZnO:Al films. The laser texture provides good light trapping which is indicated by an increase in short‐circuit current density of 20% of the bottom cell limited device compared to cells on planar ZnO:Al. The open‐circuit voltage of the cells on laser textured ZnO:Al is almost the same as for cells on planar substrates, indicating excellent growth conditions for amorphous and microcrystalline silicon on the U‐shaped grating grooves. DLIP is a simple, single step and industrially applicable method for large area periodic texturing of ZnO:Al thin films. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
In this work the impact of variation in mole fraction of tunnel junction and doping concentration of top window layer are investigated on the photovoltaic performance of dual junction InGaP/GaAs solar cell on silicon substrate. How does the Si substrate help this structure to act as a low cost concentrator cell for terrestrial application is also discussed. The detailed analysis of the cell is carried out through the performance measurement such as external quantum efficiency, internal quantum efficiency, fill factor, open circuit voltage, short circuit current density, spectral density and reflectance. This simulation model provides efficiency of 30.40 % at AM1.5G spectrum under 1 sun. It provides a path to the researcher for the development of III–V multi junction solar cell at a low cost.  相似文献   

14.
刘俊岩  秦雷  宋鹏  龚金龙  王扬  A. Mandelis 《物理学报》2014,63(22):227801-227801
建立了调制激光诱发硅太阳能电池的少数载流子密度波数学模型,并利用光致载流子辐射检测掺杂浓度、阻抗及载流子输运参数. 对频域响应曲线中的双弯曲效应进行了研究,构建了小交流信号作用的太阳能电池等效电路拓扑结构,仿真分析了不同掺杂浓度、阻抗电阻和载流子传输参数对频响曲线拐点的影响. 通过光致载流子辐射频域扫描实验与多参数拟合检测了单晶硅太阳电池的施/受主浓度、并联电阻和载流子输运参数. 结果表明:光致载流子辐射技术检测大面积太阳能电池频响曲线的双弯曲是由电容效应所引起的,建立的数学模型可定量描述和预测检测结果,并用于测量太阳能电池的掺杂浓度、电阻和载流子输运参数. 关键词: 调制自由载流子辐射 扫频检测 PN结电容 参数测量  相似文献   

15.
刘伯飞  白立沙  魏长春  孙建  侯国付  赵颖  张晓丹 《物理学报》2013,62(20):208801-208801
采用射频等离子体增强化学气相沉积技术, 研究了非晶硅锗薄膜太阳电池. 针对非晶硅锗薄膜材料的本身特性, 通过调控硅锗合金中硅锗的比例, 实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制. 借助于本征层硅锗材料帯隙梯度的设计, 获得了可有效用于多结叠层电池中的非晶硅锗电池. 关键词: 非晶硅锗薄膜太阳电池 短路电流密度 开路电压 带隙梯度  相似文献   

16.
基于P-N结的太阳能电池伏安特性的分析与模拟   总被引:3,自引:0,他引:3  
任驹  郭文阁  郑建邦 《光子学报》2006,35(2):171-175
通过分析实际P-N结与理想模型之间的差别,建立了P-N结二极管及太阳能电池的数学模型;利用Matlab中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形.对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较.模型分析与实验测量的结果表明等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流.仿真结果与实验测量结果一致.  相似文献   

17.
A new concept of edge illuminated solar cells (EISC) based on silicon epitaxial technique has been proposed. In this kind of photovoltaic (PV) devices, sun-light illuminates directly a p-n junction through the edge of the structure which is perpendicular to junction surface. The main motivation of the presented work is preparation of a working model of an edge-illuminated silicon epitaxial solar cell sufficient to cooperation with a luminescent solar concentrator (LSC) consisted of a polymer foil doped with a luminescent material. The technological processes affecting the cell I–V characteristic and PV parameters are considered.  相似文献   

18.
刘伯飞  白立沙  张德坤  魏长春  孙建  侯国付  赵颖  张晓丹 《物理学报》2013,62(24):248801-248801
针对非晶硅锗电池本征层高锗含量时界面带隙失配以及高界面缺陷密度造成电池开路电压和填充因子下降的问题,通过在PI界面插入具有合适带隙的非晶硅缓冲层,不仅有效缓和了带隙失配,降低界面复合,同时也通过降低界面缺陷密度改善内建电场分布,从而提高了电池的收集效率. 进一步引入IN界面缓冲层以及对非晶硅锗本征层进行能带梯度设计,在仅采用Al背电极时,单结非晶硅锗电池转换效率达8.72%. 关键词: 非晶硅缓冲层 非晶硅锗薄膜太阳电池 带隙 界面  相似文献   

19.
The short-circuit current and open-circuit voltage of a solar cell based on the p-n junction are studied theoretically, taking into account the thermoemf originating due to the temperature difference between the front and back surfaces of the solar cell. It is shown that the consideration of the thermal motion of photogenerated carriers leads to the increase in the collection coefficient. Calculations show that at the irradiation intensity 5 × 1020 photon/cm2 s and at the temperature gradient ~ 30–40°C for silicon solar cells the open circuit voltage increases by ~ 6–7% and the short circuit current by ~40–50%.  相似文献   

20.
We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fraction of electrons(holes)in the device are collected by anode(cathode). The direction of the corresponding current is opposite to the direction of photocurrent. And the current density increases with the bias increasing but decreases as bimolecular recombination(BR)or geminate recombination(GR) intensity increases. The maximum power, short circuit current, and fill factor display a stronger dependence on GR than on BR. While the influences of GR and BR on open circuit voltage are about the same.Our studies shed a new light on the loss mechanism and may provide a new way of improving the efficiency of bulk heterojunction organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号