首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lithiation of 4-heterosubstituted dibenzothiins 1 (phenoxathiin, phenothiazine and thianthrene) with lithium and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 7.5% molar) in THF at temperatures ranging from −90 to −78°C gives the corresponding functionalised organolithium intermediate I, which by reaction with different electrophiles [H2O, D2O, ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO, (CH2)7CO] at the same temperature, followed by hydrolysis, gives the expected functionalised thiols 2. Cyclisation of some thiols 2 under acidic conditions leads to the corresponding seven-membered dibenzo heterocycles 5. In the case of thianthrene 1c, after addition of a carbonyl compound as the first electrophile [MeCHO, ButCHO, Me2CO, Et2CO, (CH2)5CO], the corresponding intermediate II can be lithiated again and react with a second electrophile. Diols 3 are obtained after hydrolysis when a carbonyl compound [ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO] is used as the second electrophile. Acidic cyclisation of diols 3 gives substituted phthalans 6 in almost quantitative yields. Finally, in the case of using carbon dioxide as the second electrophile, phthalides 4 are obtained after acidic hydrolysis.  相似文献   

2.
The reaction of 2,2-diphenylmethylenecyclopropane (5) with an excess of lithium and a catalytic amount of DTBB (4 mol %) in THF at −78 °C leads to the formation of dilithiated species 6-8 by reductive opening of the cyclopropane ring. Further reaction of these intermediates with different electrophiles [E = H2O, D2O, CH2CMeCH2Cl, Me3SiCl, Me3SiCH2Cl, t-BuCHO, Me2CO, Et2CO, n-Pr2CO, i-Pr2CO, t-Bu2CO, (CH2)5CO, Ph2CO and adamantanone] is highly regioselective, yielding exclusively the corresponding products 9, after hydrolysis with water. However, when 3-chloro-2-(chloromethyl)propene (14) is used as a dielectrophile, the cyclisation to give a six-membered ring takes place through intermediate 6, giving compound 16 as the only reaction product.  相似文献   

3.
The 4,4′di-tert-butylbiphenyl (DTBB)-catalysed lithiation of dihydrodibenzothiepine (1) at −78 °C for 30 min followed by reaction with a carbonyl compound [tBuCHO, Ph(CH2)2CHO, PhCHO, (n-C5H11)2CO, (CH2)5CO, (CH2)7CO, (−)-menthone] at the same temperature leads, after hydrolysis with 3 M hydrochloric acid, to sulphanyl alcohols 2. If after addition of a carbonyl compound as the first electrophile [Me2CO, (CH2)5CO, (−)-menthone], the resulting dianion of type II is allowed to react at room temperature for 30 min, a second lithiation takes place to give an intermediate of type III, which by reaction with a second electrophile [Me2CO, Et2CO, (CH2)5CO, ClCO2Et], yields, after hydrolysis, difunctionalised byphenyls 4. The cyclisation of the sulphanyl alcohol 2c under acidic conditions yields the eight-membered sulphur containing heterocycle 3. The lithiation of dihydrodinaphthoheteroepines 7 and 10 with 2.2 equiv of lithium naphthalenide in THF at −78 °C followed by reaction with different electrophiles [H2O, D2O, tBuCHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO] at the same temperature leads, after hydrolysis, to unsymmetrically 2,2′-disubstituted binaphthyls 9 and 12, respectively. When the lithiation is performed with an excess of lithium in the presence of a catalytic amount of DTBB (10% molar), a double reductive cleavage takes place to give the dianionic intermediate VII, which by reaction with different electrophiles [H2O, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO], followed by hydrolysis with water, yields symmetrically 2,2′-disubstituted binaphthyls 8 and 11. In the case of starting from (R)- or (S)-dihydrodinaphthoheteroepines 7 and 10, these methodologies allow us to prepare enantiomerically pure compounds 8, 11 and 12.  相似文献   

4.
Synthetic routines for a new ligand C5Me4CH2CH2PMe2 (2b) in forms of its Li- (2b-Li), Na- (2b-Na) salts and in the CH-form (2b-H), as well as for silanes Me3Si-C5H4CH2CH2PMe2 (3a) and Me3Si-C5Me4CH2CH2PMe2 (3b) have been developed. On the basis of it, new half-sandwich [η51P-C5H4CH2CH2PMe2]ZrCl3 (4a), [η51P-C5Me4CH2CH2PMe2]ZrCl3 (4b) and sandwich [η5-C5Me4CH2CH2PMe2]2ZrCl2 (5), [η5-C5Me4CH2CH2PMe2][η5-C5Me5]ZrCl3 (6) complexes of Zr(IV) have been prepared and characterized. Along with them, the first example of X-ray structurally characterized dinuclear Zr(IV) complex incorporating both sandwich (6) and half-sandwich (4b) moieties linked one to another by means of Zr ← P coordination bond 7, has been described. Formation of an analogously organized trinuclear complex 8, built from one sandwich fragment of 5 and two half-sandwich fragments of 4b was proved by NMR spectroscopy methods. Molecular structures of half-sandwich complexes in their solvent-free dimeric forms (4a and 4b) and as 1:1 adducts with THF (4a-THF and 4b-THF) along with those of dinuclear complex 7 have been established by X-ray diffraction analyses. The dynamic behavior for di- and trinuclear complexes 7 and 8, due to the intermolecular dissociation-coordination of the Me2P-groups in THF-d8 solutions has been studied by variable-temperature NMR spectroscopy.  相似文献   

5.
Decamethyl-1,3-diboraruthenocene [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2}] (1) reacts with cyclo-octasulfur in hexane to give [(η5-C5Me5){η5-(CMe)3(BMe)2}RuS] (3), which may also be obtained from 1 and propylene sulfide. 1 reacts with H2S to form the ruthenathiacarboranyl complex [(η5-C5Me5)Ru{η4-(CMe)3(BMe)2S}] (6), for which a nido-structure is proposed. The isomeric compounds 3 and 6 have different stabilities: 3 loses sulfur and unexpectedly the closo-cluster [(η5-C5Me5)2Ru2H(CMe)3(BMe)2] (4) is formed with hydrogen bridging the basal and apical Ru centers. Reaction of 1 with carbonylsulfide (COS) yields the dinuclear ruthenium compound [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2(S)(COBMe)}]2 (7) in which two B-O groups bridge two ruthenium complexes. Its formation results from a complex reaction sequence: sulfur inserts into the diborolyl ring and the ligand CO forms an oxygen-boron bridge to a second molecule, followed by insertion of the carbonyl carbon into the double bond of the diboraheterocycle. Carbon disulfide reacts with 1 to give the dinuclear complex 8 with two CS2 molecules connecting the ruthenium centers. When 1 and P4 are heated in toluene, the sandwich 9 is obtained by formal insertion of a P-H group into the diborolyl ring of 1 and the triple-decker [{η5-(C5Me5)Ru}2{μ-(MeC)3P(MeB)2} (10) is detected in the mass spectrum. The phosphaalkyne PCtBu inserts into 1 to give the ruthenaphosphacarborane [(η5-C5Me5)Ru{(CMe)2(BMe)(PCtBu)(CMe)(BMe)}] (11) in high yield. Phosphanes react with 1 to give weak donor-acceptor complexes 1 · PH2R (12) (R=Ph, H). The compositions of the compounds are deduced from spectroscopic and analytical data and are confirmed for 4 and 7 by X-ray structural analyses.  相似文献   

6.
The fulvene complexes [(η6-C5Me4CH2)Re(CO)2(R)] (1a, RI; 1b, RC6F5) react at the exocyclic methylene carbon with a vinylmagnesium bromide solution to produce the anionic species [(η5-C5Me4CH2CHCH2)Re(CO)2(R)]. Protonation with HCl at 0 °C produces the hydride complexes [trans-5-C5Me4CH2CHCH2)Re(CO)2(R)(H)] (2a, RI; 2b, RC6F5). Thermolysis of an hexane solution of the iodo-hydride (2a) under a CO atmosphere yields the complex [(η5-C5Me4CH2CHCH2)Re(CO)3] (3) and [Re(CO)5I] as by-product. Thermolysis of 2b produced three new products, mainly the chelated complex [(η52-C5Me4CH2CHCH2)Re(CO)2] (4) and complex 3, with a non-coordinated olefin group, in moderated yield, and traces of [Re(CO)5(C6F5)]. Thermolysis of an hexane solution of 2 in presence of an excess of PMe3, afforded the phosphine derivative [(η5-C5Me4CH2CHCH2)Re(CO)2(PMe3)] (5). All the complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopies and mass spectrometry. The molecular structure of 4 has also been determined. The molecule exhibits a formal three-legged piano-stool structure, with two CO groups, and the third position corresponding to the η2-coordination of the propenyl side arm of the η5-C5Me4 ring.  相似文献   

7.
A phosphido-bridged unsymmetrical diiron complex (η5-C5Me5)Fe2(CO)4(μ-CO)(μ-PPh2) (1) was synthesized by a new convenient method; photo-dissociation of a CO ligand from (η5-C5Me5)Fe2(CO)6(μ-PPh2) (2) that was prepared by the reaction of Li[Fe(CO)4PPh2] with (η5-C5Me5)Fe(CO)2I. The reactivity of 1 toward various alkynes was studied. The reaction of 1 with tBuCCH gave a 1:1 mixture of two isomeric complexes (η5-C5Me5)Fe2(CO)3(μ-PPh2)[μ-CHC(tBu)C(O)] (3) containing a ketoalkenyl ligand. The reactions of 1 with other terminal alkynes RCCH (R=H, CO2Me, Ph) afforded complexes incorporating one or two molecules of alkynes and a carbonyl group. The principal products were dinuclear complexes bridged by a new phosphinoketoalkenyl ligand, (η5-C5Me5)Fe2(CO)3(μ-CO)[μ-CR1CR2C(O)PPh2] (4a: R1=H, R2=H; 4b: R1=CO2Me, R2=H; 4c: R1=H, R2=Ph). In the cases of alkynes RCCH (R=H, CO2Me), dinuclear complexes having a new ligand composed of two molecules of alkynes, a carbonyl group, and a phosphido group; i.e. (η5-C5Me5)Fe2(CO)3[μ-CRCHCHCRC(O)PPh2] (5a: R=H; 5b: R=CO2Me), were also obtained. In all cases, mononuclear complexes, (η5-C5Me5)Fe(CO)[CR1CR2C(O)PPh2] (6a: R1=H, R2=H; 6b: R1=H, R2=CO2Me; 6c: R1=H, R2=Ph) were isolated in low yields. The structures of 1, 4c, 5b, and 6a were confirmed by X-ray crystallography. The detailed structures of the products and plausible reaction mechanisms are discussed.  相似文献   

8.
Cecilia Gómez 《Tetrahedron》2007,63(22):4655-4662
The reaction of phenylcyclopropane (1) with an excess of lithium and a catalytic amount of DTBB (2.5% molar) in THF at room temperature, followed by treatment with an electrophile [Me3SiCl, PhMe2SiCl, t-BuCHO, PhCHO, Me2CO, Et2CO, (CH2)5CO, adamantan-2-one, i-Pr2CO, di(cyclopropyl)ketone] and final hydrolysis with water leads to allylic products 10 or 11 depending on the structure of the electrophile: whereas for chlorosilanes or crowded ketones γ-products 11 are isolated, for aldehydes and non-congested ketones α-products 10 are formed. The application of the same protocol to 1,1-diphenylcyclopropane (7) leads to a mixture of products 13-15 resulting from the introduction of one or two electrophilic fragments to the open-chain mono- or dilithiated intermediate: also in this case the regiochemistry of the reaction is governed by steric reasons.  相似文献   

9.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

10.
Treatment of PhMe2SiCH2GeMe3 (1) with t-BuLi followed by addition of Me3ECl, E = Sn, Pb, results in the formation of phenylsilyl(germyl)stannyl- and phenylsilyl(germyl)plumbyl-methanes, PhMe2Si(Me3Ge)(EMe3)CH, E = Sn (2), Pb (3). The thermal reaction of 1, 2 and 3 with Cr(CO)6 yields the corresponding aryl-Cr(CO)3 analogs, {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)CH2 (4) and {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)(EMe3)CH, E = Sn (5), Pb (6). The thermal treatment of 2 with Cr(CO)6 in a wet THF/di-n-butyl ether mixture results in the formation of the arenechromiumtricarbonyl silanol {(η6-C6H5)Cr(CO)3}Me2SiOH (7) which exhibits amphiphilic character, forming H-bonded chains in the solid state in a head-to-head arrangement of the areneCr(CO)3 units.  相似文献   

11.
Half-sandwich [η51N-C5Me4CH2-(2-C5H4N)]MCl3 (M = Ti (4), Zr (5)) and sandwich [η5-C5Me4CH2-(2-C5H4N)][η5-C5Me5]ZrCl2 (6) ring-peralkylated complexes have been prepared and characterized. Evidence of the intramolecular coordination of the side-chain pyridyl group both in 4 and 5 in solutions is provided by NMR spectroscopy data. Crystal structure of an adduct 5-py with one molecule of pyridine has been established by X-ray diffraction analysis.  相似文献   

12.
A novel half-sandwich Zr(IV) complex [η51-N-C5(CH3)4CH2CH2N(CH3)2]ZrCl3 (6) together with zirconocene dichlorides [η5-C5(CH3)4CH2CH2N(CH3)2][η5-C5(CH3)5]ZrCl2 (4) and [η5-C5(CH3)4CH2CH2N(CH3)2]2ZrCl2 (5) have been prepared. Complex 6 has been isolated and characterized in three different forms, namely, as an adduct with THF 6a, an adduct with tetrahydrothiophene 6b, and a solvent-free form 6c. Molecular structures of complexes 4, 6b, and 6c have been established by X-ray diffraction analysis. Complex 6c has been shown to be a monomeric solvent-free half sandwich Zr(IV) complex. The dynamic behavior of complex 6a in a non-solvating medium (an equilibrium between 6a and 6c along with a degenerate interconversion of the Zr-Ccp-CH2-CH2-N(CH3)2-(Zr) pseudo-five-member metallacycle) have been studied by the variable-temperature 1H and 13C{1H} NMR spectroscopy. The activation parameters for the degenerate five-member cycle interconversion have been elucidated.  相似文献   

13.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

14.
The reaction of biphenyl (1) with an excess of lithium in THF at room temperature leads to a solution of the corresponding dianion (I), which by successive reactions with an alkyl fluoride [E1 = n-C8H17F, c-C5H9CH2F, CH2CH(CH2)4F] at 0 °C and another electrophile [E2 = n-C4H9Br, Et2CO, Me2C(O)CH2, i-Pr3SiCl] at −78 °C yields the corresponding 1,4-disubstituted 1,4-dihydrobiphenyls 3 in a regioselective manner, as mixtures of cis- and trans-isomers. The diastereomers of 3 are separated by column chromatography.  相似文献   

15.
Reactions of 1,4-dilithiobutadienes (from 1,4-diiodo-1,2,3,4-tetraethylbutadiene (1) and 2,2′-dibromobiphenyl (7) with t-BuLi) with Me3SiCl gave siloles (3 and 9a) as the major products. No evidence for a disilylated butadiene was obtained. Use of higher molecular weight chlorosilanes ((allyl)Me2SiCl, BnMe2SiCl, and PhMe2SiCl) with dibromide 7 gave dimethylsilole 9a and a silane (10a, 10b, or 10c) resulting from trapping of the organic group by the chlorosilane.  相似文献   

16.
A series of tricarbonyl rhenium(I) and manganese(I) complexes of the electroactive 2-(pyrazolyl)-4-toluidine ligand, H(pzAnMe), has been prepared and characterized including by single crystal X-ray diffraction studies. The reactions between H(pzAnMe) and M(CO)5Br afford fac-MBr(CO)3[H(pzAnMe)] (M = Mn, 1a; Re, 1b) complexes. The ionic species {fac-M(CH3CN)(CO)3[H(pzAnMe)]}(PF6) (M = Mn, 2a; Re, 2b) were prepared by metathesis of 1a or 1b with TlPF6 in acetonitrile. Complexes 1a and 1b partly ionize to {M(CH3CN)(CO)3[H(pzAnMe)]+}(Br) in CH3CN but retain their integrity in less donating solvents such as acetone or CH2Cl2. Each of the four metal complexes reacts with (NEt4)(OH) in CH3CN to give poorly-soluble crystalline [fac-M(CO)3(μ-pzAnMe)]2 (M = Mn, 3a; Re, 3b). The solid state structures of 3a and 3b are of centrosymmetric dimeric species with bridging amido nitrogens and with pyrazolyls disposed trans- to the central planar M2N2 metallacycle. In stark contrast to the diphenylboryl derivatives, Ph2B(pzAnMe), none of the tricarbonyl group 7 metal complexes are luminescent.  相似文献   

17.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

18.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

19.
Treatment of [Ti](Cl)(CCSiMe3) (1) {[Ti]=(η5-C5H5)2Ti} with Ni(CO)4 (2) in a 1:1 molar ratio produces the heterobimetallic early-late transition metal complex {[Ti](Cl)(CCSiMe3)}Ni(CO) (3), which features a low-valent Ni(CO) entity stabilized by a datively bonded Cl and a η2-coordinated Me3SiCC ligand. As side-products [Ti]Cl2 (8) and {[Ti](CCSiMe3)2}Ni(CO) (5) are formed. The latter complex can also be synthesized by the reaction of [Ti](CCSiMe3)2 (4) with equimolar amounts of 2. If 3 is reacted with stoichiometric amounts of P(OR)3 (6a, R=C6H5; 6b, R=C6H4CH3-2; 6c, R=C6H4tBu-2) the bis(alkynyl) titanocene 4, (CO)2Ni[P(OR)3]2 (7a, R=C6H5; 7b, R=C6H4CH3-2; 7c, R=C6H4tBu-2), complex 8, {[Ti](μ,η12-CCSiMe3)}2 (9) along with Me3SiCCCCSiMe3 (10) is produced. A possible mechanism for the formation of these species is presented. The solid-state structure of 7b is reported. Complex 7b crystallizes in the tetragonalic space group P-421c with the following parameters: a=14.852(2), b=14.852(2), c=19.410(4) Å, V=4281.5(12) Å3, Z=4 and ρ=1.271 g cm−3. Mononuclear 7b features a Ni(0) centre in a pseudo-tetrahedral environment, caused by the CO and P(OC6H4CH3-2)3 ligands.  相似文献   

20.
The complex [(η6-C6Me6)Ru(μ-Cl)Cl]21 react with sodium salts of β-diketonato ligands in methanol to afford the oxygen bonded neutral complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)Cl] {R1, R2 = CH3 (2), CH3, C6H5 (3), C6H5 (4), OCH3 (5), OC2H5 (6)}. Complex 4 with AgBF4 yields the γ-carbon bonded ruthenium dimeric complex 7. Complex 4 also reacts with tertiary phosphines and bridging ligands to yield complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)(L)]+ (L = PPh3 (8), PMe2Ph (9)) and [{η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)}2(μ-L)] L = 4,4′-bipyridine (4,4′-bipy) (11), 1,4-dicyanobenzene (DCB) (12) and pyrazine (Pz) (13). Complexes 2-4 react with sodium azide to yield neutral complexes [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)N3] {R1, R2 = CH3 (10a), CH3, C6H5 (10b), C6H5 (10c). All these complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures of complexes [(η6-C6Me6)Ru(κ2-O,O′CH3COCH-COC6H5)Cl] (3) and [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5] (4) were established by single crystal X-ray diffraction studies. The complex 3 crystallizes in the triclinic space group, [a = 7.9517(4), b = 9.0582(4) and c = 14.2373(8) Å, α = 88.442(3)°, β = 76.6.8(3)° and γ = 81.715(3)°. V = 987.17(9) Å3, Z = 2]. Complex 4 crystallizes in the monoclinic space group, P21/c [a = 7.5894(8), b = 20.708(2) and c = 29.208(3) Å,β = 92.059(3)° V = 4587.5(9) Å3, Z = 8].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号