首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The acid catalyzed hydrolytic cleavage of the oxazine rings in the readily available tetraoxazine derivatives of resorcinarenes results in tetraaminoresorcinarenes. A similar process applied to C2-symmetrical bisoxazine resorcinarene tetratosylates affords C2v-symmetrical resorcinarenediamines. The mild acylation of these resorcinareneamines with BOC-anhydride or para-nitrophenyl ester proceeds selectively at the nitrogen atoms without affecting the hydroxyl groups. Most of the resulting resorcinareneamides are thus obtained in preparative yields and can be easily purified by simple crystallizations. In the crystalline state the compounds obtained are found to bind chloride anions through hydrogen bonds and electrostatic interactions and to display a chiral arrangement of hydrogen bonded functional groups at the wide rim of the macrocycle.  相似文献   

2.
《中国化学快报》2023,34(7):108042
[1n]metacyclophanes are a class of important building blocks for supramolecular assembly of artificial capsules. Herein we present the preparation and properties of a novel polyfluorinated macrocycle meta-WreathArene, a C2-symmetrical [14]metacyclophane. Adopting a cone conformation in acetone solution, the macrocycle can form dimer capsules through hydrogen bonds induced by chloride anions. Each dimer capsule consists of two meta-WreathArene and two chloride anions, and has been unambiguously characterized both in solution and in solid state.  相似文献   

3.
The synthesis and binding investigations of first generation C(3v)-symmetrical hydrogen bonding urea-amide based tripodal receptors, 1-6, with various anions such as acetate, phosphate, sulfate and chloride in DMSO-d(6) are presented. Analysis of the (1)H NMR titrations of 1-6 showed on all occasions the selective formation of 1?:?1 stoichiometries.  相似文献   

4.
Triphenyl(2,4,5‐trimethoxybenzyl)phosphonium chloride is formed in solvent‐free form by the reaction under anhydrous conditions between triphenylphosphane and 2,4,5‐trimethoxybenzyl chloride, but when it is crystallized from a mixture of ethyl acetate and chloroform in the presence of air it forms a stoichiometric monohydrate, C28H28O3P+·Cl·H2O, (I). The reactions between the anhydrous phosphonium salt and alkoxy‐substituted benzaldehydes, using Wittig reactions in the presence of potassium tert‐butoxide, provide a series of multiply substituted stilbenes, most of which were assigned the Z configuration on the basis of their NMR spectra. However, no such deduction could be made for the symmetrically substituted (Z)‐2,2′,4,4′,5,5′‐hexamethoxystilbene, C20H24O6, (II). Compound (II) does in fact have the Z configuration and the molecular geometry provides evidence for steric congestion around the central double bond; in particular, the central alkene fragment is nonplanar, with a C—C=C—C torsion angle of 7.8 (4)°. In hydrated salt (I), the chloride anions and water molecules are linked by O—H...Cl hydrogen bonds to form C21(4) chains; each cation is linked by C—H...O hydrogen bonds to two different chains, so forming a sheet structure. There are no direction‐specific intermolecular interactions in the structure of (II).  相似文献   

5.
Cavitands bearing both eight (5) and two (13) metal-ligating carboxymethylphosphonate groups on their rims were synthesized by Arbuzov reaction of the corresponding bromoacetamido cavitands with trialkyl phosphites. These exist in the vase conformation in CDCl(3) and are stabilized by a cyclic seam of hydrogen bonds. This structure was also found in the solid state for the octabromoacetamide 4a and diphosphonate cavitand 13 by single-crystal X-ray analysis. Cavitands 5 and 13 form caviplexes in CDCl(3), CD(2)Cl(2), and alcohol solutions with adamantane derivatives 15a,b, quinuclidine 15d, ammonium and phosphonium salts 14, and drugs like ibuprofen 15c, all of which are stable on the NMR time scale at 295 K. NMR spectroscopy reveals that at 223 K octaphosphonate 5b exists in two forms: the major C(4)-symmetrical compound is filled with solvent while the minor species shows intramolecular inclusion of a dialkoxyphosphoryl group. In methanol-d(4) 5 and 13 exist in a lower symmetry vase conformation with self-inclusion of one alkyl group. Interaction of these complexes with La(OTf)(3) results in a change in the conformation of the cavitand from vase to kite with concomitant and quantitative release of the encapsulated guests. Two to three equivalents of the lanthanide salt per equivalent of cavitand 5a-d is necessary for the complete decomplexation of the included guest. The kite and the vase conformers equilibrate slowly on the NMR time scale at 295 K. The addition of good ligands for metal cations (nitrate or CMPO calixarene 16) shifts the equilibrium to the vase-shaped caviplex and allows quantitative control of the binding and release of the guest. The lanthanide complexes of octaphosphonates 5 in methanol-d(4) are velcraplex-like dimers held together by four metal cations.  相似文献   

6.
The non‐covalent interactions of different upper‐rim‐substituted C2‐resorcinarenes with tetramethylammonium salts were analyzed in the gas phase in an Electrospray Ionization Fourier‐transform ion‐cyclotron‐resonance (ESI‐FTICR) mass spectrometer and by 1H NMR titrations. The order of binding strengths of the hosts towards the tetramethylammonium cation in the gas phase reflects the electronic nature of the substituents on the upper rim of the resorcinarene. In solution, however, a different trend with particularly high binding constants for halogenated resorcinarenes has been observed. This trend can be explained by a synergetic effect originating from the interaction of the halogenated resorcinarenes with the counter anions through hydrogen bonding. This study highlights the importance of weak interactions in recognition processes and points out the benefits of comparing the gas‐phase data with results obtained from solution experiments.  相似文献   

7.
The structure of the title compound, (C6H7N2O)6[V10O28]·2H2O, at 120 (2) K has monoclinic (C2/c) symmetry. The asymmetric unit consists of one half‐decavanadate anion of Ci symmetry, three cations and one water molecule. Each water molecule is hydrogen bonded to two decavanadate anions, thus forming a one‐dimensional chain of anions. The three‐dimensional supramolecular structure is formed by a network of N—H...O, O—H...O and C—H...O hydrogen bonds, in which the cations, anions and water molecules are involved, and by nonparallel‐displaced π‐stacking interactions between pyridine rings. As a result of hydrogen bonding, the carboxamide groups of the cations are somewhat twisted from the pyridine ring plane.  相似文献   

8.
At 10–20 K the broad room temperature IR bands of the hydrogen bonded cluster anions in tetramethylammonium fluoride and hydroxide monohydrates and monohydrates-dn are resolved into a number of components. The band patterns are consonant with distortion of formally tetrahedral H4F2O22? and H6O42? ions of Td point group to C2v and S4, respectively in a C4h5 unit cell isomorphous with tetramethylammonium hexafluorosilicate. A lattice mode has been identified for each monohydrate.  相似文献   

9.
In this study, we have deliberately utilized the second-sphere coordination approach into the construction of supramolecular inclusion solids Cl ? [H2 L1]·[InCl4] (Crystal I) and Br ? [H2 L1]·[TeBr6] (Crystal II). The chloride or bromine anions can be encapsulated inside the host assemblies formed by the diamine molecule (4,6-dimethyl-1,3-phenylene) bis(N,N-dibenzylmethane) (L1) and the metal complexes ([InCl4]? and [TeBr6]2?) via second-sphere interactions. The inclusion complexes have been structurally characterized by X-ray crystallography, indicating that weak C–H···Cl and C–H···Br hydrogen bonding synthons play a significant role in the construction of host framework. 2-D networks are formed in both complexes by the interconnection of 1-D networks through the multiple weak hydrogen bonding interactions with [InCl4]? or [TeBr6]2?. The guest Cl? or Br? anions are encapsulated inside the host cages through N–H···Cl hydrogen bonds. The inclusion selectively was studied for the two host assemblies.  相似文献   

10.
Two 1:1 proton‐transfer complexes of sulfobenzoic acids with aromatic amines, namely 4‐[2‐(4‐pyridyl)ethenyl]pyridinium 2‐carboxybenzenesulfonate, C12H11N2+·C7H5O5S, (I), and 1,10‐phenanthrolin‐1‐ium 4‐carboxybenzenesulfonate dihydrate, C12H9N2+·C7H5O5S·2H2O, (II), have very different hydrogen‐bonding patterns compared with reported organic sulfobenzoic acid complexes. In (I), two cations and two anions form a four‐molecule loop, in which π–π interactions occur. In (II), the anions and water molecules form a three‐dimensional hydrogen‐bonding network, while the cations only act as pendant components. The water molecules play a central role in the formation of the abundant hydrogen‐bonding architecture in (II). The relative poorness and richness of hydrogen bonds in (I) and (II), respectively, give rise to novel hydrogen‐bonding patterns.  相似文献   

11.
The 4-amino-1,8-naphthalimide-based anion receptor 3 binds dihydrogenphosphate with 1:1 stoichiometry through cooperative hydrogen bonding to a naphthalimide N-H and thiourea N-H groups. This was clearly established from 1H NMR titration experiments in DMSO-d6 where a substantial shift in the resonance for the naphthalimide N-H was observed concomitant with the expected thiourea N-H chemical shift migration upon successive additions of H2PO4. However, whilst 1H NMR titration experiments indicate that 3 was capable of binding other anions such as acetate, the naphthalimide N-H does not participate and the N-H resonance was essentially invariant during the titration. The lack of cooperative binding in this instance was justifiable on steric grounds.  相似文献   

12.
Several bis(triazolium)‐based receptors have been synthesized as chemosensors for anion recognition. The central naphthalene core features two aryltriazolium side‐arms. NMR experiments revealed differences between the binding modes of the two triazolium rings: one triazolium ring acts as a hydrogen‐bond donor, the other as an anion–π receptor. Receptors 92+?2BF4 ? (C6H5), 112+?2BF4 ? (4‐NO2?C6H4), and 132+?2BF4? (ferrocenyl) bind HP2O73? anions in a mixed‐binding mode that features a combination of hydrogen‐bonding and anion–π interactions and results in strong binding. On the other hand, receptor 102+?2 BF4 ? (4‐CH3O?C6H4) only displays combined Csp2?H/anion–π interactions between the two arms of the receptors and the bound anion rather than triazolium (CH)+???anion hydrogen bonding. All receptors undergo a downfield shift of the triazolium protons, as well as the inner naphthalene protons, in the presence of H2PO4? anions. That suggests that only hydrogen‐bonding interactions exist between the binding site and the bound anion, and involve a combination of cationic (triazolium) and neutral (naphthalene) C?H donor interactions. Theoretical calculations relate the electronic structure of the substituent on the aromatic group with the interaction energies and provide a minimum‐energy conformation for all the complexes that explains their measured properties.  相似文献   

13.
A new decavanadate compound V10O28[Co(H2O)6]3(C8H18O6N2S2)2 (I) is synthesized and characterized by single crystal X-ray diffraction, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy. The sizes of the monoclinic unit cell are as follows: a = 13.2851(16) ?, b = 22.769(3) ?, c = 13.1883(16) ?, ??= 117.555(2)°, V = 3536.7(7) ?3, C2/m space group, Z = 2. The studies revealed that different moieties in the compound show a three-dimensional framework structure, in which {CoO6}, the decavandate cluster anions, and 1,4-piperazinediethanesulfonic acid (PIPES) interact with each other by intermolecular forces and strong hydrogen bonding. Bond valence calculations were used to calculate the valence states of the atoms.  相似文献   

14.
A chiral C2-symmetric NCN ligand, (5R,7R)-1,3-bis(6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanoquinolin-2-yl)benzene has been synthesized. A direct cyclometalation of this ligand with K2MCl4 (M = Pt, Pd) in dry acetic acid offered the corresponding pincer complexes, [(5R,7R)-1,3-bis(6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanoquinolin-2-yl)phenyl]platinum(II) chloride 5a and its palladium(II) analogue 5b. The Pt(II) and Pd(II) complexes 5 were characterized by NMR spectroscopy, and X-ray crystal structure analysis was done for the Pt(II) complex. The NMR data for both the complexes and X-ray crystal structural data for the chloro-Pt(II) complex indicate the existence of intramolecular C-H?Cl hydrogen bonding both in solution and in solid states. Chloride abstraction from 5a by treatment with silver triflate resulted in the corresponding triflate complex 6a, which generates the corresponding cationic aqua complex 7a in the presence of water molecules. The Pt(II) complex 6a/7a was used as asymmetric catalyst in the aldol reaction between methyl isocyanoacetate and aldehydes and also in the silylcyanation of aldehydes.  相似文献   

15.
Effect of ortho-methyl groups in the benzene rings of the macrocyclic matrix on the chemistry of cavitands with phosphorous amide bridges in the upper rim is studied. The presence of ortho-methyl groups is shown to prevent formation of phosphacavitands of C 4v symmetry and favor formation of macrocyclic systems of C 2v symmetry, enhance solubility of phosphacavitands in organic solvents, hinder oxidation of phospha(III)cavitands and decrease the yield of phospha(V)cavitands, prevent formation of binuclear molybdenum complexes of phosphorous amide cavitands, and favor formation of their tetranuclear analogs.  相似文献   

16.
Modular cyclodiphosph(V)azanes are synthesised and their affinity for chloride and actetate anions were compared to those of a bisaryl urea derivative ( 1 ). The diamidocyclodiphosph(V)azanes cis‐[{ArNHP(O)(μ‐tBu)}2] [Ar=Ph ( 2 ) and Ar=m‐(CF3)2Ph ( 3 )] were synthesised by reaction of [{ClP(μ‐NtBu)}2] ( 4 ) with the respective anilines and subsequent oxidation with H2O2. Phosphazanes 2 and 3 were obtained as the cis isomers and were characterised by multinuclear NMR spectroscopy, FTIR spectroscopy, HRMS and single‐crystal X‐ray diffraction. The cyclodiphosphazanes 2 and 3 readily co‐crystallise with donor solvents such as MeOH, EtOH and DMSO through bidentate hydrogen bonding, as shown in the X‐ray analyses. Cyclodiphosphazane 3 showed a remarkably high affinity (log[K]=5.42) for chloride compared with the bisaryl urea derivative 1 (log[K]=4.25). The affinities for acetate (AcO?) are in the same range ( 3 : log[K]=6.72, 1 : log[K]=6.91). Cyclodiphosphazane 2 , which does not contain CF3 groups, exhibits weaker binding to chloride (log[K]=3.95) and acetate (log[K]=4.49). DFT computations and X‐ray analyses indicate that a squaramide‐like hydrogen‐bond directionality and Cα?H interactions account for the efficiency of 3 as an anion receptor. The Cα?H groups stabilise the Z,Z‐ 3 conformation, which is necessary for bidentate hydrogen bonding, as well as coordinating with the anion.  相似文献   

17.
A rapid and efficient method for preparation of C2-symmetrical 1,3,5-triazine polycarboxylate ligands was developed. The reactions included either selective mono- or di-substitution of 2,4,6-trichloro-1,3,5-triazine with various nucleophiles containing carboxyl group(s), followed by nucleophilic displacement of the remained chloride(s) in aqueous media under microwave irradiation. Novel C2-symmetrical tripodal ligands were afforded in good yields and purities under short reaction time with simple work-up, which are potentially useful as structural directing units in metal-organic frameworks.  相似文献   

18.
A new naphthalene based receptor (L) has been designed and synthesized which shows a remarkable color change from colorless to pink on selective binding with acetate. The anion recognition property of the receptor via hydrogen bonding interactions is monitored by UV-vis, fluorescence, and 1H NMR titrations. It is observed that in each case, the receptor shows a specific selectivity toward the acetate ion over other interfering anions. Thus, a significant bathochromic shift in UV-vis spectrum with a sharp pink color in ‘naked-eye’ makes the receptor suitable for the detection of the acetate ion.  相似文献   

19.
The thermodynamic behaviour of imidazolium based ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]; 1-octyl-3-methylimidazolium chloride [C8mim][Cl], and 1-butyl-3-methylimidazolium methylsulfate [C4mim][C1OSO3] in ethylene glycol [HOCH2CH2OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K to probe the interactions in bulk. For the purpose, volumetric properties such as excess molar volume, VmE, apparent molar volume, V?,i, and its limiting values at infinite dilution, V?,i, have been calculated from the experimental density measurements. The molecular scale interactions between ionic liquids and EG have been investigated through Fourier transform infrared (FTIR) and 1H NMR spectroscopy. The shift in the vibrational frequency for C–H stretch of aromatic ring protons of ILs and O–H stretch of EG molecules has been analysed. The NMR chemical shifts for various protons of RTILS or EG molecules and their deviations show multiple hydrogen bonding interactions of varying strengths between RTILs and EG in their binary mixtures.  相似文献   

20.
M.B. Huang 《Tetrahedron》1985,41(22):5209-5212
The electronic structures of five C9H9-, carboanions have been studied by ab initio STO-3G calculations, and some general conclusions on related C9H9- and C9H9+ structures are presented. Large antibonding interactions in one occupied MO make barbaral-9-yl anion (2) unstable as its cationic counterpart (8). The proposed D9h-symmetrical cation and D3h-symmetrical anion (3) do not exist due to Jahn-Teller distortions. A study of the MO correlations confirms that the two tetracyclic anions with C2v symmetry (5 and 6) are the results of the Jahn-Teller distortions of 3. Anion 5 is identified as the proper intermediate of the Cope rearrangement of anion 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号