首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of ethyl (E)- and (Z)-4-alkoxy-2-fluoro-3,4-diphenylbut-2-enoates (6-8) prepared from benzoin ethers and ethyl 2-(diethoxyphosphoryl)-2-fluoroacetate were transformed in high yields to the target 3-fluoro-4,5-diphenylfuran-2(5H)-one (14) using bromine in tetrachloromethane at room temperature. The non-cyclisable Z-isomers 6b-8b were gradually isomerised to the cyclisable E-isomers 6a-8a during the process. The reaction of the (E)-butenoates 6a-8a with boron trifluoride led to furanone 14, while in Z-isomers 6b-8b both alkoxy group and vinylic fluorine were substituted with bromine during the reaction. Mechanisms for both complex reactions have been proposed. Furanone 14 was transformed to 2-[tert-butyl(dimethyl)silyloxy]-3-fluoro-4,5-diphenylfuran (18) as a novel building block.  相似文献   

2.
After mixing a methylbenzene 4 with “magic blue” solution in F113 (CClF2CCl2F) containing bis{perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl}nitroxide 2 and perfluoro-1-nitroso-1-[1-(2-fluorosulfonyl)ethoxy]ethane 3 at room temperature, benzylic H-atom of 4 could be selectively abstracted by 2, and benzyl radical 5 thus generated was immediately trapped by 3. Based on hyper-fine splitting constants (hfsc), the structure of the spin adducts perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl benzyl nitroxides 6 derived from seven methylbenzenes have been identified. The mechanism of the H-abstraction/spin trapping process is also discussed.  相似文献   

3.
New pyridine-phosphine chalcogenide ligands, tris[2-(2-pyridyl)ethyl]phosphine sulfide 1a and tris[2-(2-pyridyl)ethyl]phosphine selenide 1b, react with zinc(II) and cadmium(II) chlorides in EtOH at room temperature to afford complexes of compositions 2ZnCl2·2L (2, L = 1a) and 3CdCl2·2L (3a,b, L = 1a,b) in high yields. The solid-state structure of complexes 2, 3 has been proved by X-ray analysis data. Complex 2 is a centrosymmetric dimer, where two atoms of zinc are bonded by two bridging pyridine-phosphine sulfide ligands through N atoms. Complexes 3a,b exist as polymeric chains with each bridging ligand acting as a chelate N,S- or N,Se-donor to one cadmium(II) center and as a pyridine N-donor to the next cadmium(II) center.  相似文献   

4.
Sodium dithionite initiated reactions of 1-bromo-1-chloro-2,2,2-trifluoroethane (1) with methyl and trimethylsilyl ethers of cyclopentanone and cyclohexanone enols (2a-d) in a MeCN/H2O system were investigated. 2-(2,2,2-Trifluoroethylidene)cyclopentanone (4a) and 2-(2,2,2-trifluoroethylidene)-cyclohexanone (4b), respectively, were obtained as the main products and isolated in reasonable yields. The reaction with a 1:1 mixture of 5- and 3-methyl substituted 1-methoxycyclohexenes, 2e and 2f, revealed strong influence of steric hindrance on the reaction rate; a mixture of 2-(2,2,2-trifluoroethylidene)-5-methylcyclohexanone (6) and 2-(2,2,2-trifluoroethylidene)-3-methylcyclohexanone (7) in a 9:1 ratio was formed. Ketones 4a and 4b were reduced to the corresponding alcohols 8 and 9 and the reaction of 4b with hydrazine gave an indazole derivative 10.  相似文献   

5.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

6.
An efficient and novel total synthesis of the two bioactive retinoids temarotene and arotinoid acid (TTNPB) is described. The key steps in this process include the regio and stereoselective hydrotelluration of thioacetylene 9 and Te/Li transmetalation of mixed (Z)-1,2-bis(organylchalcogene)-1-alkene (Z)-3. The subsequent reaction involving the β-phenylthio vinyl lithiated intermediate 10 with dimethyl sulfate gave the (E)-vinyl sulfide 11. The Ni+2 cross-coupling of 11 with the corresponding phenylzinc bromide and p-oxazoline phenylzinc bromide 12 afforded the respective temarotene 2 and retinoid-oxazoline substituted 13. Finally, compound 13 was deprotected with HCl to furnish arotinoid acid (TTNPB) 1.  相似文献   

7.
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI2(THF)2 (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)2LnII(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl3 (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)2LnIIICl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the sidearms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for ε-caprolactone (CL).  相似文献   

8.
Sundus A. Al-Awadi 《Tetrahedron》2004,60(13):3045-3049
2-(N-Phenylamino)propanoic acid 1a and 3-(N-phenylamino)-propanoic acid 2a together with four of their aryl analogues were pyrolysed in the gas-phase. The reactions were homogeneous and free from catalytic and radical pathways. Analysis of the pyrolysate of 1 showed the elimination products to be carbon monoxide, acetaldehyde and aniline, while the pyrolysate of 2 reveals the formation of acrylic acid in addition to aniline. Theoretical study of the pyrolysis of 2 using an ab initio SCF method lend support to a reaction pathway involving a 4-membered cyclic transition state.  相似文献   

9.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

10.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

11.
2-Hydroxy-4-oxo-4-(2,3,5,6-tetrafluoro-4-methoxyphenyl)-but-2-enoic acid methyl ester (1) was synthesized by the reaction of pentafluoroacetophenone with dimethyl oxalate in the presence of sodium methylate. Subsequently, reactions of compound 1 with aniline, o-phenylenediamine, and o-aminophenol were investigated. In addition, the thermal cyclization of ester 1 was studied and led to the formation of 5,6,8-trifluoro-7-methoxy-4-oxo-4H-chromene-2-carboxylic acid methyl ester (6) due to nucleophilic substitution of the 3-fluoro group. Hydrolysis of compound 1 and subsequent cyclization by treatment with SOCl2 gave 5-(2,3,5,6-tetrafluoro-4-methoxyphenyl)-furan-2,3-dione (3). Thermal decarbonylation of compound 3 under mild conditions resulted in the formation of 3-(2,3,5,6-tetrafluoro-4-methoxyphenyl)-propene-1,3-dione (4) which dimerized to pyranone 5.  相似文献   

12.
1-(2-Nitratoethyl)-5-nitriminotetrazole (2) was formed by the reaction of 1-(2-hydroxyethyl-5-aminotetrazole (1) and 100% HNO3. Compound 1 was obtained by alkylation of 5-amino-1H-tetrazole. Next to the known byproduct 1-(2-hydroxyethyl)-5-nitriminotetrazole (3), a second one, 1-(2-nitratoethyl)-5-aminotetrazolium nitrate (4) was obtained and fully characterized. Nitrogen-rich salts such as the ammonium (5), hydroxylammonium (6), guanidinium (7), aminoguanidinium (8), diaminoguanidinium (9) and triaminoguanidinium (10) 1-(2-nitratoethyl)-5-nitriminotetrazolate were prepared by deprotonation or metathesis reactions. The reaction of 2 and diaminourea yielded 1-(2-nitratoethyl)-5-aminotetrazole (11). Compounds 4-11 were fully characterized by single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), multinuclear NMR spectroscopy, elemental analysis and DSC measurements. The heats of formation of 5-10 were calculated by the atomization method based on CBS-4M enthalpies. Regarding the possible application of these compounds as energetic materials or high explosives, several detonation parameters such as the detonation pressure, velocity, energy and temperature were computed using the EXPLO5 code and the X-ray densities as well as the computed heats of formation. In addition the sensitivities towards impact, friction and electrical discharge were tested using the BAM drophammer, a friction tester as well as a small scale electrical discharge device.  相似文献   

13.
3-Phenoxypropanoic acid (1), 3-(phenylthio)propanoic acid (2), and 4-phenylbutanoic acid (3) were pyrolysed between 520 and 682 K. Analysis of the pyrolysates showed the elimination products to be acrylic acid and the corresponding arene. Pyrolysis of ethyl 3-phenoxypropanoate (4) and its methyl analogue (5), ethyl 3-(phenylthio)propanoate (6) and its methyl counterpart (7), and 3-phenoxypropane nitrile (8) were also investigated between 617 and 737 K. The thermal gas-phase elimination kinetics and product analysis are compatible with a thermal retro-Michael reaction pathway involving a four-membered cyclic transition state.  相似文献   

14.
l-(N-Cbz)-7-azaisotryptophan, l-(N-Cbz)-1a, a new isostere of tryptophan, was synthesized by reacting Li2-(N-Boc)-2-amino-3-picoline, Li2-(N-Boc)-2a, with appropriately protected l-aspartic acid followed by simple functional group manipulation. This synthetic success led us to access a set of analogs of azaisotryptophan (4ac; 6ac) as well as a new class of chiral amines (7ac; 8ac) for future application in asymmetric synthesis and design of homochiral ligands. Further, we have generalized the method substantiating a variety of new azaindol-2-yl derivatives (10aa10lc) with functionalized substituents. In a preliminary luminescence characterization, l-(N-Cbz)-1a has exhibited about 30 nm bathochromic shifted fluorescence emission compared to tryptophan and (N-Cbz)-tryptophan.  相似文献   

15.
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from the corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acid chlorides (5a-d) using HSnBu3.  相似文献   

16.
Asymmetric cyclopentadienes and indenes are easily prepared by nucleophilic attack of LiCp or LiInd on tosylate or triflate of ethyl (S)-(−) lactate. The selectivity of the reaction depends on the nature of the leaving group. This is particularly true in the case of the reaction of LiCp with sulfonates of ethyl (S)-(−) lactate. Indeed, only the monosubstituted cyclopentadiene lactate 2 is obtained from the triflate 6, whereas from the tosylate 1, besides 2 (20%) a 1,3-disubstituted cyclopentadiene lactate 3 is isolated (16.5%). From cyclopentadiene and indene lactate 2 and 7, optically active β-hydroxycyclopentadiene 10 and β-hydroxyindene 11 are obtained by reduction with LiAlH4. Two rhodium(I) complexes 14 and 15 have been synthesized from (R,S)-2-(cyclopentadienyl)N,N-dimethylpropanamide 12 and (S)-2-(cyclopentadiene)propan-1-ol 10, respectively. The molecular structure of these complexes has been determined. Analytical and preparative chiral HPLC have been used to determine the optical purity of the ligands and to isolate enantiopure cyclopentadienyl complexes from racemic or enantiomerically enriched rhodium(I) complexes.  相似文献   

17.
1,1,3,3,3-Pentafluoro-2-pentafluorophenyl-1,2-epoxypropane 1 reacted with trimethylphosphite giving two diastereomers, (Z)- and (E)-3,6-bis(trifluoromethyl)-3,6-bis(pentafluorophenyl)-1,4-dioxan-2,5-dione 2a, b in a 1:1 ratio, cyclodimerisation product of the intermediately generated α-lactone 4. Compounds 2a, b were hydrolysed to furnish 3,3,3-trifluoro-2-hydroxy-2-(2,3,4,5,6-pentafluorophenyl)propionic acid 5.  相似文献   

18.
The reaction of succinamic acid (H2sucm) with Ca(NO3)2·4H2O yielded compounds [Ca(Hsucm)(NO3)(H2O)]n (1) and [Ca(Hsucm)2]n (2). The succinamate(-1) ligand presents two new ligation modes and coordinates through the two carboxylato and the amide O-atoms, thus bridging three CaII ions which assemble into zig-zag 1D chains in 1 and 2D networks in 2. Intermolecular hydrogen bonding interactions in the crystal structures of 1 and 2 result in overall 3D framework structures. Both compounds have been characterized by IR and 1H NMR spectroscopy, and their thermal decomposition was monitored by TG/DTG and DSC measurements. The structural comparison of 1 and 2 with known lanthanide(III) succinamate(-1) complexes reveals differences in the coordination mode of the ligand and in the coordination number of the metal ions; the biological relevance of these differences is discussed.  相似文献   

19.
The synthesis of novel bulky tris[dimethyl(ethyl/benzyl/p-tolyl/α-naphthyl)silylmethyl]stannanes (1-4) is described. Alkylation of SnCl4 with Me2(ethyl/p-tolyl)SiCH2MgBr (10-11) gave mainly the triorganotin chlorides [(Me2(ethyl/p-tolyl)SiCH2)]3SnCl 14 and 15, which were isolated by silica gel chromatography. Reduction of 14 and 15 with LiAlH4 in THF gave the corresponding triorganotin hydrides 1 and 2, respectively. [Me2(benzyl/α-naphthyl)SiCH2]3SnCl 16 and 17, generated by the alkylation of SnCl4 with Me2(benzyl/α-naphthyl)SiCH2MgBr 12 and 13, were inseparable from the minor product [Me2(benzyl/α-naphthyl)SiCH2]2SnCl218 and 19, respectively. Treatment of the mixtures of 16/18 and 17/19 with NaOH furnished the corresponding mixtures of stannoxanes, from which the hexakisdistannoxanes [Me2(benzyl/α-naphthyl)SiCH2]6Sn2O 20 and 22 were isolated from the minor dialkyltin oxide derivatives [Me2(benzyl/α-naphthyl)SiCH2]2SnO in good yields. Reduction of 20 and 22 with BH3 in THF gave [Me2(benzyl/α-naphthyl)SiCH2]3SnH (3 and 4), respectively in good yields. 1H, 13C, 119Sn, 29Si NMR characteristics of the newly synthesized compounds are included.  相似文献   

20.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号