首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HF and MP2 calculations with the 6-31G∗∗ and 6-311G∗∗ basis sets for the titled molecules and those at MP2/cc-pVTZ level for the hypothetical tricyclo[3.2.0.01,3]heptane indicate that the latter molecule should have a carbon atom with highly unusual configuration strongly departing from the tetrahedral one. Both analysis of vibrational frequencies of this molecules and comparison of its energy with those of known isomeric syn- and anti- tricyclo[3.2.0.02,4]heptanes as well as the DFT analysis of its plausible decomposition routes performed at the DFT level indicate that it could be a plausible synthetic target.  相似文献   

2.
The synthesis, chemical trapping, and dimerization of a highly pyramidalized alkene is reported. Its dimer is a unique nonacycle featuring three planar cyclobutane rings, four cyclopentane rings, and four cyclohexane rings in boat conformations. The X‐ray diffraction analysis showed a H–H distance between the flagpole hydrogen atoms of 1.999 Å and a separation of 2.619 Å between the two flagpole carbon atoms. The three cyclobutane rings of the dimer were thermally stable.  相似文献   

3.
4.
5.
Bond-stretch isomerism in benzo[1,2:4,5]dicyclobutadienle (BDCB) has been investigated using the MR-AQCC/6-31G(d) method, a high-level multireference ab initio approach including size-extensivity corrections. The applied theoretical approach includes both nondynamical and dynamical electron correlation effects. Full MR-AQCC geometry optimizations of localized (1) and delocalized (3) isomers as well as the transition structure (TS) have been determined using D2h, symmetry restriction. The calculations show that both isomers are approximately of equal stability separated by a barrier with a height of about 5 kcal mol(-1). Thus, the present results strongly indicate that benzof[1,3:4,5]dicyclobutadiene is a very good candidate for an organic compound exhibiting bond-stretch isomerism, since isomers 1 and 3 correspond to true minima on the double-well potential energy surface, which are separated by a sufficiently high barrier. It is particularly important to emphasize that isomer 3 represents a realization of the highly elusive quasi-[10]annulene.  相似文献   

6.
5-Methyl-2-phenylpentacyclo[5.4.0.02, 6.03, 10.05, 9]undecane-8, 11-dione,5-methyl-2-phenylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8-one-11-ol,and 5-methyl-2-phenylpentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-diol are three cage compounds which differ only in the oxidation state at C(8) and C(11). The three compounds contain a four-membered, a six-membered, and four five-membered rings fused into a cagelike structure. An X-ray structure analysis shows the C(1)-C(7) and C(9)-C(10) bonds in the diketo cage to be 1.606(2) and 1.586(2) Å, which are significantly longer than in the other two molecules. In order to assess the effects of strain, steric, and electronic factors in these compounds, we investigated the unsubstituted parent cage compounds and a series of derivatives by molecular mechanics (MM3), AMPAC (AM1), MOPAC (PM3), and GAUSSIAN 90 calculations. These data suggest that dipolar through space interactions are responsible for the bond elongation and not a * interaction, which has been postulated in parallel-systems originating from a common bond. A small degree of * through-bond interaction may contribute to the lengthening in the dimethylene cage analogues.  相似文献   

7.
Cube-like double four-ring (d4r) cages are among the most frequent building units of zeolites and zeotypes. In materials synthesised in fluoride-containing media, the fluoride anions are preferentially incorporated in these cages. In order to study the impact of framework composition and organic structure-directing agents (OSDAs) on the possible occurrence of local distortions of fluoride-containing d4r cages, density functional theory (DFT) calculations and DFT-based molecular dynamics simulations were performed for AST-type zeotypes, considering four different compositions (SiO2, GeO2, AlPO4, GaPO4) and two different OSDA cations (tetramethylammonium [TMA] and quinuclidinium [QNU]). All systems except SiO2-AST show significant deformations, with a pyritohedron-like distortion of the d4r cages occurring in GeO2- and GaPO4-AST, and a displacement of the fluoride anions towards one of the corners of the cage in AlPO4- and GaPO4-AST. While the distortions occur at random in TMA-containing zeotypes, they exhibit a preferential orientation in systems that incorporate QNU cations. In addition to providing detailed understanding of the local structure of a complex host-guest system on the picosecond timescale, this work indicates the possibility to stabilise ordered distortions through a judicious choice of the OSDA, which might enable a tuning of the material's properties.  相似文献   

8.
9.
With the help of state‐of‐the‐art ab initio molecular dynamics methods, we investigated the reaction pathway of the {tBu3P + H2 + B(C6F5)3} system at the mesoscopic level. It is shown that: i) the onset of H2 activation is at much larger boron???phosphorus distances than previously thought; ii) the system evolves to the product in a roaming‐like fashion because of quasi‐periodic nuclear motion along the asymmetric normal mode of P???H?H???B fragment; iii) transient configurations of a certain type are present despite structural interference from the solvent; iv) transient‐state configurations with sub‐picosecond lifetime have potentially interesting infrared activity in the organic solvent (toluene) as well as in the gas phase. The presented results should be helpful for future experimental and theoretical studies of frustrated Lewis pair (FLP) activity.  相似文献   

10.
A rare example of an organometallic terbium single‐ion magnet is reported. A Tb3+–[1]ferrocenophane complex displays a larger barrier to magnetization reversal than its isostructural Dy3+ analogue, which is reminiscent of trends observed for lanthanide–bis‐phthalocyanine complexes. Detailed ab initio calculations support the experimental observations and suggest a significantly larger ground‐state stabilization for the non‐Kramers ion Tb3+ in the Tb complex than for the Kramers‐ion Dy3+ in the Dy complex.  相似文献   

11.
Semiconducting Group 14 clathrates are inorganic host–guest materials with a close structural relationship to gas hydrates. Here we utilize this inherent structural relationship to derive a new class of porous semiconductor materials: noble gas filled Group 14 clathrates (Ngx[M136], Ng=Ar, Kr, Xe and M=Si, Ge, Sn). We have carried out high‐level quantum chemical studies using periodic Local‐MP2 (LMP2) and dispersion‐corrected density functional methods (DFT‐B3LYP‐D3) to properly describe the dispersive host–guest interactions. The adsorption of noble gas atoms within clathrate‐II framework turned out to be energetically clearly favorable for several host–guest systems. For the energetically most favorable noble gas filled clathrate, Xe24[Sn136], the adsorption energy is ?52 kJ mol?1 per guest atom at the LMP2/TZVPP level of theory, corresponding to ?9.2 kJ mol?1 per framework Sn atom. Considering that a hypothetical guest‐free Sn clathrate‐II host framework is only 2.6 kJ mol?1 per Sn atom less stable than diamond‐like α‐Sn, the stabilization resulting from the noble gas adsorption is very significant.  相似文献   

12.
Trinuclear systems of formula [{Cr(LN3O2Ph)(CN)2}2M(H2LN3O2R)] (M=MnII and FeII, LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M−N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph)(CN)2] and divalent pentagonal bipyramid complexes [MII(H2LN3O2R)]2+ with various R substituents (R=NH2, cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M−N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C−N−Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.  相似文献   

13.
We investigate the transition‐state (TS) region of the potential energy surface (PES) of the reaction tBu3P+H2+B(C6F5)3tBu3P‐H(+)+(?)H?B(C6F5)3 and the dynamics of the TS passage at room temperature. Owing to the conformational inertia of the phosphane???borane pocket involving heavy tBu3P and B(C6F5)3 species and features of the PES E(P???H, B???H | B???P) as a function of P???H, B???H, and B???P distances, a typical reactive scenario for this reaction is a trajectory that is trapped in the TS region for a period of time (about 350 fs on average across all calculated trajectories) in a quasi‐bound state (scattering resonance). The relationship between the timescale of the TS passage and the effective conformational inertia of the phosphane???borane pocket leads to a prediction that isotopically heavier Lewis base/Lewis acid pairs and normal counterparts could give measurably different reaction rates. Herein, the predicted quasi‐bound state could be verified in molecular collision experiments involving femtosecond spectroscopy.  相似文献   

14.
15.
16.
A first principles methodology, aimed at understanding the roles of molecular conformation and energetics in host–guest binding interactions, is developed and tested on a system that pushes the practical limits of ab initio methods. The binding behavior between the [2.2.2]‐cryptand host (4,7,13,16,21,24‐hexaoxa‐1,10‐diaza‐bicyclo[8.8.8]hexacosane) and alkali metal cations (Li+, Na+, and K+) in gas, water, methanol, and acetonitrile is characterized. Hartree–Fock and density functional theory methods are used in concert with crystallographic information to identify gas phase, energy‐minimized conformations. Gas phase free energies of binding, with vibrational contributions, are compared to solution‐state binding constants through relative binding selectivity analysis. Calculated relative binding free energies qualitatively correlated with solution state experiments only after gas phase metal desolvation is considered. The B3LYP exchange–correlation functional improves theoretical correlations with experimental relative binding free energies. The relevance of gas phase calculations towards understanding binding in condensed phases is discussed. Natural bond orbital methods highlights previously unidentified intramolecular and intermolecular M+(222) chemistries, such as an intramolecular n′O→σ*CH hydrogen bond.  相似文献   

17.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

18.
19.
The recently postulated concept of “ultrastability” and “electron‐deficient aromaticity” (Vach, Nano Lett 2011, 11, 5477; Vach, J Chem Theory Comput 2012, 8, 2088) in a sila‐bi[6]prismane having an additional entrapped silicon atom, Si19H12, has been disproved on the basis of a careful analysis of the energetic characteristics related to the formation of this and other silicon hydrides. The central silicon atom in Si19H12 is weaker bound to other silicon atoms than in conventional tetrahedral silanes; moreover, Si19H12 possesses a significant amount of strain. The role of strain in the formation of the title compounds has been further rationalized by calculating the relative energies for the transformation to a half‐planar conformation in methane and in silane and by calculating the respective strain energies. The strain energy value in Si18H12 is equal to 9.93 eV whereas the same property for Si19H12 lies in range of 6.42–8.85 eV. Two low‐energy isomers of Si19H12 which lie by 2.77 and 3.42 eV (!) lower in energy than the originally considered sila‐bi[6]prismane‐based structure have been proposed. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Dibenzo[a,f]pentalene ( [a , f ]DBP ) is a highly antiaromatic molecule having appreciable open-shell singlet character in its ground state. In this work, DFT calculations at the B3LYP/6-311+G(d,p) level of theory were performed to explore the efficiency of three strategies, that is, BN/CC isosterism, substitution, and (di)benzoannulation of [a , f ]DBP , in controlling its electronic state and (anti)aromaticity. To evaluate the type and extent of the latter, the harmonic oscillator model of aromaticity (HOMA) and aromatic fluctuation (FLU) indices were used, along with the nucleus-independent chemical shift NICS-XY-scan procedure. The results suggest that all three strategies could be employed to produce either the closed-shell system or open-shell species, which may be in the singlet or triplet ground state. Triplet states have been characterized as aromatic, which is in accordance with Baird's rule. All the singlet states were found to have weaker global paratropicity than [a , f ]DBP . Additional (di)benzo fusion adds local aromatic subunit(s) and mainly retains the topology of the paratropic ring currents of the basic molecule. The substitution of two carbon atoms by the isoelectronic BN pair, or the introduction of substituents, results either in the same type and very similar topology of ring currents as in the parent compound, or leads to (anti)aromatic and nonaromatic subunits. The triplet states of all the examined compounds are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号