首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the creation of polymeric micro/nanostructures which exhibit distinct chemical and physical characteristics from the matrix poly(N-vinyl carbazole) (PVK). The structure formation is based on atomic force microscopy (AFM) facilitated cross-linking and oxygenation. The reaction of PVK with AFM lithographically induced nanoscale discharge produces raised structures in which bridge oxygen links neighboring carbazole groups. The cross-linking by bridge oxygen converts the initially insulating PVK matrix to chemically modified conducting patterns through the formation of extended pi-conjugations. A comprehensive AFM, PES (photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), and DFT (density functional theory) analysis is presented to address the chemophysical identity of the patterned structures. Our results demonstrate new capabilities of AFM nanolithography in generating heterogeneous functional structures in a polymer matrix.  相似文献   

2.
Redox protein nanoscale domains on the cell surface of a bacterium, Shewanella oneidensis MR1, grown in the absence and presence of electron acceptors, is topographically characterized using combined atomic force microscopy (AFM) and confocal surface enhanced Raman scattering (SERS) spectroscopy. The protruding nanoscale domains on the outer membrane of S. oneidensis were observed, as was their disappearance upon exposure to electron acceptors such as oxygen, nitrate, fumarate, and iron nitrilotriacetate (FeNTA). Using SERS spectroscopy, a redox heme protein was identified as a major component of the cell surface domains. This conclusion was further confirmed by the disappearance of Raman vibrational frequencies, characteristic of heme proteins, upon exposure of the cells to electron acceptors. Our experimental results from our AFM imaging and SERS spectroscopy, consistent with the literature, suggest the protruding nanoscale surface domains as heme-containing secretions. Our results on the distributions of redox proteins on microbial cell surfaces will be helpful for a mechanistic understanding of the behaviors of surface proteins and their interactions with redox environments.  相似文献   

3.
A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate.  相似文献   

4.
Dip-pen纳米刻蚀技术(简称DPN技术)为在目标基底上沉积一个有序或连续的图案提供了一条简单而有效的途径,DPN技术是一种直接书写的扫描探针刻蚀技术,它使用原子力显微镜探针针尖,在一定的驱动力下,直接将化学试剂“墨水”转移到目标基底上.近年来,利用DPN技术已经成功地实现了多种“墨水一基底”组合。  相似文献   

5.
We demonstrated the nanocharacterization and nanofabrication of a Nafion thin film using atomic force microscopy (AFM). AFM images showed that the Nafion molecules form nanoclusters in water, in 5% methanol, and in acetic acid. Young's modulus E of a Nafion film was estimated by sequential force curve measurements in water and in 5% methanol on one sample surface. Ewater/E5% methanol was 1.75 +/- 0.40, so the film was much softer in 5% methanol than in water. Even when solvent was replaced from 5% methanol to water, Young's modulus was not recovered soon. We showed the first example of the mechanical properties of a Nafion film on the nanoscale. Furthermore, we succeeded in fabricating 3D nanostructures on a Nafion surface by AFM nanolithography in liquids. Our results showed the new potential of the AFM nanolithography of a polymer film by softening the molecules in liquids.  相似文献   

6.
The bulk morphology and surface features that developed upon precipitation on micrometer-size calcite powders and millimeter-size cleavage fragments were imaged by three different microscopic techniques: field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) of Pt-C replicas, and atomic force microscopy (AFM). Each technique can resolve some nanoscale surface features, but they offer different ranges of magnification and dimensional resolutions. Because sample preparation and imaging is not constrained by crystal orientation, FE-SEM and TEM of Pt-C replicas are best suited to image the overall morphology of microcrystals. However, owing to the decoration effect of Pt-C on the crystal faces, TEM of Pt-C replicas is superior at resolving nanoscale surface structures, including the development of new faces and the different microtopography among nonequivalent faces in microcrystals, which cannot be revealed by FE-SEM. In conjunction with SEM, Pt-C replica provides the evidence that crystals grow in diverse and face-specific modes. The TEM imaging of Pt-C replicas has nanoscale resolution comparable to AFM. AFM yielded quantitative information (e.g., crystallographic orientation and height of steps) of microtopographic features. In contrast to Pt-C replicas and SEM providing three-dimensional images of the crystals, AFM can only image one individual cleavage or flat surface at a time.  相似文献   

7.
The synthesis of four novel nanoscale 1,3,5,7-tetrasubstituted adamantanes 22 and 25-27 designed for atomic force microscopy (AFM) applications is described. Each tetrahedrally shaped molecule incorporates a broad tripodal base made up of three identical legs that terminate with a sulfur-containing moiety, which is either a 4-acetylsulfanylmethylphenyl unit or else a (1,2,5-dithiazepan-1-yl)phenyl unit. The sulfur atoms are intended for eventual binding of the molecule multivalently to the apex of a gold-coated commercial AFM tip through formation of multiple S-Au bonds. In each molecule, the fourth terminus is a para-substituted benzoic acid methyl ester that is designed to scan the sample. We demonstrate that 27 is sufficiently large and rigid to be imaged by a conventional AFM tip. Adamantanes 22 and 25-27 may also find application as chemically well-defined nanoscale objects for calibration of AFM tips.  相似文献   

8.
The surface roughness of a few asperities and their influence on the work of adhesion is of scientific interest. Macroscale and nanoscale adhesion data have seemingly given inconsistent results. Despite the importance of bridging the gap between the two regimes, little experimental work has been done, presumably due to the difficulty of the experiment needed to determine how small amounts of surface roughness might influence adhesion data lying in between the two scales. To investigate the role of few-asperity contacts in adhesion, the pull-off force was measured between different sized atomic-force microscope (AFM) tips (with different roughnesses) and sample surfaces that had well-controlled material properties. There were seventeen tips of four different types, with radii from 200 nm to 60 microm. The samples were unpatterned single crystal silicon with a chemical silicon dioxide surface resulting from a standard silicon wafer clean. Some of the samples were treated with a few angstroms of vapor deposited diphenylsiloxane. We observed that the uncorrected (for surface roughness) pull-off force was independent of the radius of the AFM tip, which was contrary to all continuum-mechanics model predictions. To explain this behavior, we assumed that the interactions between the AFM tip and sample were additive, material properties were constant, and that the AFM tip, asperities, and sample surfaces were of uniform density. Based on these assumptions, we calculated a simple correction due to the measured root mean square (RMS) surface roughness of the AFM tips. The simple correction for the RMS surface roughness resulted in the expected dependence of the pull-off force on radius, but the magnitudes were higher than expected. Commercial and heat-treated AFM tips have minimal surface roughness and result in magnitudes that are more reliable. The relative uncertainty for the pull-off force was estimated to be 10%. In this paper, we derive how the cantilever and tip parameters contribute to the measured pull-off force and show how the corrected results compare with theory. Although much work is still needed, the work presented here should advance the understanding of adhesion between the macroscale and nanoscale regimes.  相似文献   

9.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

10.
Effect of Mg2+ and SO2*4 on wettability alteration of modified calcite surface to oil-wet by stearic acid (SA) is addressed both in macroscopic and nanoscale using contact angle and atomic force microscopy technique (AFM), respectively. No apparent difference is shown by AFM images, compared to a clear trend that is obtained form contact angle measurements, where Mg2+ ions have shown to alter the modified calcite surface to more water-wet than that in presence of SO2*4 ions. The adhesion forces, due to the presence of SA, are shown to be less pronounced in presence of Mg2+ ion than that in case of SO2*4. This confirms the macroscale measurements of contact angle by nanoscale level. The phenomenon of the alteration to more water-wet calcite surface is related to the distribution coefficient of SA in n-decane/water system, which decreased in presence of Mg2+ and SO2*4 ions, indicating less adsorption of SA on calcite surface.  相似文献   

11.
In yeasts, cell surface stresses are detected by a family of plasma membrane sensors. Among these, Wsc1 contains an extracellular cysteine-rich domain (CRD), which mediates sensor clustering and is believed to anchor the sensor in the cell wall. Although the formation of Wsc1 clusters and their interaction with the intracellular pathway components are important for proper stress signaling, the molecular mechanisms underlying clustering remain poorly understood. Here, we used the combination of single-molecule atomic force microscopy (AFM) with genetic manipulations to demonstrate that Wsc1 clustering involves disulfide bridges of the CRD. Using AFM tips carrying nitrilotriacetate groups, we mapped the distribution of individual His-tagged sensors on living yeast cells. While Wsc1 formed nanoscale clusters on native cells, clustering was no longer observed after treatment with the reducing agent dithiothreitol (DTT), indicating that intra- or intermolecular disulfide bridges are required for clustering. Moreover, DTT treatment resulted in a significant increase in cell surface roughness, suggesting that disulfide bridges between other cell-wall proteins are crucial for proper cell surface topology. The remarkable sensor properties unravelled here may well apply to other sensors and receptors with cysteine-rich domains throughout biology. Our combined method of AFM with genetic manipulations offers great prospects to explore the mechanisms underlying the clustering of cell surface proteins.  相似文献   

12.
The micro phase separated nanoscale morphology of phase separated polyurethanes (PUs) was visualized by atomic force microscopy (AFM) height and phase imaging of smooth surfaces obtained by ultramicrotonomy. PUs were obtained from 4,4′-methylenbis (phenyl isocyanate) (MDI), 1,4-butanediol (BD) and poly(tetrahydrofurane) polyether polyol (PTHF). The segmented polyether PUs with varying stoichiometric ratio of the isocyanate and hydroxyl groups were prepared to investigate the effect of molar mass, as well as the type and number of end-groups on their morphology and mechanical performance.The PU samples studied show characteristic “fingerprint” AFM phase images. Novel dynamic imaging modes of AFM, including HarmoniX material mapping and Peak Force Tapping were used to assess the mechanical performance of phase separated polyurethanes quantitatively as a function of their molecular structure. The values of surface elastic moduli were determined with nanoscale resolution and were in excellent agreement for both AFM modes. While tensile testing provides a bulk average value for the elastic modulus of the elastomers, the novel AFM based elastic moduli mappings introduced enable the study of surface stiffness with nanoscale resolution in a quantitative way.  相似文献   

13.
Atomic force microscopy (AFM) is traditionally used as an imaging technique to gain qualitative information for a biological system. We have successfully used the imaging capabilities of the AFM to determine protein-protein association constants. We have developed a method to measure the molecular weight of a protein based on its volume determined from AFM images. Our volume determination method allows for rapid, accurate analysis of large protein populations. On the basis of the measured volume, the fraction of monomers as dimers was determined for the DNA helicase UvrD, and the dissociation constant (K(d)) for the helicase was calculated. We determined a K(d) for UvrD of 1.4 microM, which is in good agreement with published K(d) data obtained from analytical ultracentrifugation (AUC) studies. Our method provides a rapid method for determining protein-protein association constants.  相似文献   

14.
Sn4+掺杂对TiO2纳米颗粒膜光催化降解苯酚活性的影响   总被引:28,自引:0,他引:28  
金属离子掺杂能改善TiO2纳米微粒光催化活性,在光降解大气和水污染物的研究中,已引起人们的重视[1,2].实验证明,掺杂物的浓度、掺杂离子的分布、掺杂能级与TiO2能带匹配程度、掺杂离子d电子的组态、电荷的转移和复合等因素对催化剂的光催化活性有直接影响[3].Kamat等[4]曾利用TiO2颗粒与SnO2颗粒混合制膜,使光催化剂活性得到提高.但Sn4+掺杂TiO2用于光催化剂尚少见报道.本文采用等离子体化学气相沉积法(PECVD)[5]制备了Sn4+离子掺杂的TiO2纳米颗粒膜催化剂(TiO2-Sn),考察了其对苯酚的光催化降解活性,讨论了Sn4+离子的掺杂方式及光催化活性提高的机理.  相似文献   

15.
This article describes a new method for site-specific, atomic force microscope (AFM) fabrication of nanowire heterostructures using electrochemical dip-pen nanolithography (E-DPN). We have demonstrated that E-DPN is ideally suited for the in situ modification of nanoscale electronic devices; the AFM tip and the nanowire device can be used as electrodes and the reactants for the modification can be introduced by coating them onto the AFM tip. Specifically, we have created GaN nanowire heterostructures by a local electrochemical reaction between the nanowire and a tip-applied KOH "ink" to produce gallium nitride/gallium oxide heterostructures. By controlling the ambient humidity, reaction voltage, and reaction time, good control over the modification geometry is obtained. Furthermore, after selective chemical etching of gallium oxide, unique diameter-modulated nanowire structures can be produced. Finally, we have demonstrated the unique device fabrication capabilities of this technique by performing in situ modification of GaN nanowire devices and characterizing the device electronic transport properties. These results demonstrate that small modifications of nanowire devices can lead to large changes in the nanowire electron transport properties.  相似文献   

16.
17.
A method for preparing surfaces with well-defined nanoscale chemical patterns is described. The fabrication strategy involves creating nanoscale Au pits surrounded by a TiO2 matrix, or vice versa, using colloidal lithography, followed by selective functionalization of the Au areas by CH3-terminated alkanethiols. Using AFM force spectroscopy with chemically modified tips (OH, CH3), we show that the nanopatterned surfaces display strong chemical contrast, in the form of hydrophobic CH3 nanopatches surrounded by a hydrophilic TiO2 surface, or vice versa. The nanofabrication approach presented here offers several advantages over existing patterning technologies, among which are easiness (no sophisticated instrumentation is required), versatility (patterns with a range of surface functionalities can be prepared), and the possibility to produce patterns over large areas at low cost.  相似文献   

18.
Biofilms are complex microbial communities that are resistant to attack by bacteriophages and to removal by drugs and chemicals. Here we use atomic force microscopy (AFM) to image the attack on Escherichia coli biofilms by Bdellovibrio bacteriovorus 109J. Bdellovibrio is a small, predatory bacterium that invades and devours other Gram-negative bacteria. We demonstrate that under dilute nutrient conditions, bdellovibrios can prevent the formation of simple bacterial biofilms and destroy established biofilms; under richer conditions the prey bacteria persist and are not eradicated, but may be shifted toward solution populations. Using AFM we explore these bacterial interactions with more detail and accuracy than available by more traditional staining assays or optical microscopy. AFM also allows us to investigate the nanoscale morphological changes of the predator, especially those related to motility. This demonstration of Bdellovibrio's successful predation in a biofilm inspires us to consider ways that it might be used productively for industrial, medical, agricultural, and biodefensive purposes.  相似文献   

19.
The cell surface glycoprotein CD44 was implicated in the progression, metastasis and apoptosis of certain human tumors. In this study, we used atomic force microscope (AFM) to monitor the effect of curcumin on human hepatocellular carcinoma (HepG2) cell surface nanoscale structure. High-resolution imaging revealed that cell morphology and ultrastructure changed a lot after being treated with curcumin. The membrane average roughness increased (10.88 ± 4.62 nm to 129.70 ± 43.72 nm) and the expression of CD44 decreased (99.79 ± 0.16% to 75.14 ± 8.37%). Laser scanning confocal microscope (LSCM) imaging showed that CD44 molecules were located on the cell membrane. The florescence intensity in control group was weaker than that in curcumin treated cells. Most of the binding forces between CD44 antibodies and untreated HepG2 cell membrane were around 120-220 pN. After being incubated with curcumin, the major forces focused on 70-150 pN (10 μM curcumin-treated) and 50-120 pN (20 μM curcumin-treated). These results suggested that, as result of nanoscale molecular redistribution, changes of the cell surface were in response to external treatment of curcumin. The combination of AFM and LSCM could be a powerful method to detect the distribution of cell surface molecules and interactions between molecules and their ligands.  相似文献   

20.
We describe the synthesis of two novel well-defined tower-shaped 1,3,5-trisubstituted adamantanes 30 and 33 that incorporate a macrocyclic trilactam ring system. Each nanoscale molecule has a broad tripodal base consisting of three identical sulfur-containing termini as the tripod feet, 4-acetylsulfanylmethylphenyl units in the case of 30 and 3,5-bis(acetylsulfanylmethyl)phenyl units in the case of 33. The sulfur atoms are designed to bind the molecules trivalently to the apex of a gold-coated commercial AFM tip through formation of three S-Au bonds. The rigid adamantane-derived head unit with a single hydrogen atom at the apex is designed to scan the sample. Molecules 30 and 33 are synthesized from 1,3,5-triethynyladamantane by a series of Sonogashira coupling reactions involving terminal alkynes and aryl iodides. A macrocyclic trilactam unit is included for added rigidity. We demonstrate that molecule 30 is sufficiently large and rigid to be visualized by a conventional AFM tip. These nanoscale molecules may also find application as chemically well-defined nanoscale objects for calibration of AFM tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号