首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To express high-active soluble d-amino acid oxidase (DAAO), a constitutive plasmid that is regulated by a native hydantoinase promoter (PHase), was constructed. A d-amino acid oxidase gene (dao) was ligated with the PHase and cloned into pGEMKT to constitutively express protein of DAAO without the use of any inducer such as isopropyl β-d-1-thiogalactopyranoside which is poisonous to the cells and environment. The ribosome binding site region, host strain, and fermentation conditions were optimized to increase the expression level. When cultivated in a 5-m3 fermenter, the enzyme activity of JM105/pGEMKT-R-DAAO grown at 37 °C was found to be 32 U/mL and increase 16-fold over cells of BL21(DE3)/pET-DAAO grown at 28 °C. These results indicate the success of our approaches to overproducing DAAO in soluble form in Escherichia coli.  相似文献   

2.
d-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding d-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from d-galactose into d-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to d-galactose led to a significant enhancement in the d-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, d-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from d-galactose to d-tagatose of 60% and 11.1 g l−1 h−1 were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among d-tagatose production progresses.  相似文献   

3.
A gene encoding a novel (S)-specific NADH-dependent alcohol dehydrogenase (LK-ADH) was isolated from the genomic DNA of Lactobacillus kefir DSM 20587 by thermal asymmetric interlaced-polymerase chain reaction. The nucleotide sequence of (S)-LK-ADH gene (adhS) was determined, which consists of an open reading frame of 1,044 bp, coding for 347 amino acids with a molecular mass of 37.065 kDa. After a BLAST similarity search in GenBank database, the amino acid sequence of (S)-LK-ADH showed some homologies to several zinc containing medium-chain alcohol dehydrogenases. This novel gene was deposited into GenBank with the accession number of EU877965. adhS gene was subcloned into plasmid pET-28a(+), and recombinant (S)-LK-ADH was successfully expressed in E. coli BL21(DE3) by isopropyl-β-d-1-thiogalactopyranoside induction. Purified enzyme showed a high enantioselectivity in the reduction of acetophenone to (S)-phenylethanol with an ee value of 99.4%. The substrate specificity and cofactor preference of recombinant (S)-LK-ADH were also tested.  相似文献   

4.
The protective antigen (PA) of Bacillus anthracis is a potent immunogen and an important candidate vaccine. In addition, it is used in monitoring systems like enzyme-linked immunosorbent assay to assess antibodies against PA in immunized subjects. The low level of PA production in B. anthracis and the difficulty of separating it from other bacterial components have made the researchers do different studies with the aim of producing recombinant PA (rPA). In this study, to produce rPA as a recombinant protein vaccine, the partial sequence of protective antigen of B. anthracis, amino acids 175–764, as a potent immunogenic target was inserted in pET21b(+). This is a prokaryotic plasmid that carries an N-terminal T7.tag sequence. The integrity of constructed plasmid was confirmed using restriction enzyme mapping. rPA was expressed after induction with isopropyl β-d-1-thiogalactopyranoside in Escherichia coli BL21. Purification of rPA was done with an affinity system using anti T7.tag antibody. Electrophoresis and Western blotting confirmed the specificity of the expressed protein. BALB/c mice were immunized with obtained PA protein and evaluation of specific immunoglobulin G antibodies against PA in sera using Western blotting method and showed that rPA is immunogenic. The challenge of immunized mice with virulent strain of B. anthracis showed that rPA is functional to protect against pathogenic strain.  相似文献   

5.
Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.  相似文献   

6.
The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.  相似文献   

7.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

8.
Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A562−1 h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.  相似文献   

9.
A rapid and convenient assay system was developed to detect viable Escherichia coli in water. The target bacteria were recovered from solution by immunomagnetic separation and incubated in tryptic soy broth with isopropyl-β-d-thiogalactopyranoside, which induces formation of β-galactosidase in viable bacteria. Lysozyme was used to lyse E. coli cells and release the β-galactosidase. β-Galactosidase converted 4-methylumbelliferyl-β-d-galactoside to 4-methylumbelliferone (4-MU), which was measured by fluorescence spectrophotometry using excitation and emission wavelengths of 355 and 460 nm, respectively. Calibration graphs of 4-MU fluorescence intensity versus E. coli concentration showed a detection range between 8 × 104 and 1.6 × 107 cfu mL−1, with a total analysis time of less than 3 h. The advantage of this method is that it detects viable cells because it is based on the activity of the enzyme intrinsic to live E. coli.  相似文献   

10.
The thermogenic curves of metabolism of the four strains of Escherichia coli pUC19cab/JM109, pUC19cab/XL-IBlue, JM109 and XL-IBlue were determined using the LKB-2277 BioActivity Monitor and the ampoule method at 37°C. The pUC19cab/JM109 and pUC19cab/XL-IBlue are recombinant E. coli strains bearing the same foreign plasmid pUC19cab, which confers the ability to produce polyhydroxyalkanoates (PHAs). The yield of PHAs of pUC19cab/XL-IBlue was higher than that of pUC19cab/JM109. XL-IBlue and JM109 were the host bacteria. The heat flow of these strains was XL-Blue≈JM109>pUC19cab/JM109>pUC19cab/XL-IBlue. These results indicate an obvious interrelation between the PHAs production and the heat flow rate of E. coli strains.  相似文献   

11.
Low yields, poor folding efficiencies and improper disulfide bridge formation limit large-scale production of cysteine-rich proteins in Escherichia coli. Human renal dipeptidase (MDP), the only human β-lactamase known to date, is a homodimeric enzyme, which contains six cysteine residues per monomer. It hydrolyses penem and carbapenem β-lactam antibiotics and can cleave dipeptides containing amino acids in both d- and l-configurations. In this study, MDP accumulated in inactive form in high molecular weight, disulfide-linked aggregates when produced in the E. coli periplasm. Mutagenesis of Cys361 that mediates dimer formation and Cys93 that is unpaired in the native MDP led to production of soluble recombinant enzyme, with no change in activity compared with the wild-type enzyme. The removal of unpaired or structurally inessential cysteine residues in this manner may allow functional production of many multiply disulfide-linked recombinant proteins in E. coli.  相似文献   

12.
A new minor asterosaponin (20S)-6-O-{β-d-fucopyranosyl-(1→2)-[β-d-fucopyranosyl-(1→4)-β-d-quinovopyranosyl-(1→2)]-β-d-quinovopyranosyl-(1→3)-β-d-quinovopyranosyl}-3β,6α,20-trihydroxycholest-9(11)-en-23-one 3-sulfate (archasteroside C) was isolated from the starfish Archaster typicus collected in shallow coastal waters of Vietnam. The structure of archasteroside C was determined by 2D NMR spectroscopy and electrospray ionization (ESI) tandem mass spectrometry.  相似文献   

13.
In this study, the fed-batch fermentation technique was applied to improve the yield of l-threonine produced by Escherichia coli TRFC. Various fermentation substrates and conditions were investigated to identify the optimal carbon source, its concentration and C/N ratio in the production of l-threonine. Sucrose was found to be the optimal initial carbon source and its optimal concentration was determined to be 70 g/L based on the results of fermentations conducted in a 5-L jar fermentor using a series of fed-batch cultures of E. coli TRFC. The effects of glucose concentration and three different feeding methods on the production of l-threonine were also investigated in this work. Our results showed that the production of l-threonine by E. coli was enhanced when glucose concentration varied between 5 and 20 g/L with DO-control pulse fed-batch method. Furthermore, the C/N ratio was a more predominant factor than nitrogen concentration for l-threonine overproduction and the optimal ratio of ammonium sulfate to sucrose (g/g) was 30. Under the optimal conditions, a final l-threonine concentration of 118 g/L was achieved after 38 h with the productivity of 3.1 g/L/h (46% conversion ratio from glucose to threonine).  相似文献   

14.
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg−1 at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K m values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na+, NH4+, Mg2+, Fe2+, Fe3+, Co2+, and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.  相似文献   

15.
A genetically engineered Escherichia coli was developed as the source of enzyme for rapidly quantifying glutamine. E. coli BL21 (DE3) cells overexpressing a glutamine synthetase from Bacillus subtilis were prepared as tube aliquots and used in a small volume of nontoxic mixture. The current method was compared to high performance liquid chromatography analysis, Sigma kit (GLN-1) and Mecke method. The method is applicable to a wide range of glutamine concentrations (0.05–2.5 mM) and correlates well to the detection results obtained from high performance liquid chromatography (Pearson correlation is 0.978 at the 0.01 level). Moreover, the whole assay procedure takes less than 15 min and uses nontoxic reagents, so it can be applied to monitor glutamine production and utilization conveniently.  相似文献   

16.
Escherichia coli O157:H7 remains a continuous public health threat, appearing in meats, water, fruit juices, milk, cheese, and vegetables, where its ingestion at concentrations of perhaps as low as 10 to 100 organisms can result in potent toxin exposure and severe damage to the lining of the intestine. Abdominal pain and diarrhea develop, which in the very young or elderly can progress towards hemolytic uremic syndrome and kidney failure. To assist in the detection of E. coli O157:H7, a recombinant bacteriophage reporter was developed that uses quorum sensing (luxI/luxR) signaling and luxCDABE-based bioluminescent bioreporter sensing to specifically and autonomously respond to O157:H7 serotype E. coli. The bacteriophage reporter, derived from phage PP01, was tested in artificially contaminated foodstuffs including apple juice, tap water, ground beef, and spinach leaf rinsates. In apple juice, detection of E. coli O157:H7 at original inoculums of 1 CFU mL−1 occurred within approximately 16 h after a 6-h pre-incubation, detection of 1 CFU mL−1 in tap water occurred within approximately 6.5 h after a 6-h pre-incubation, and detection in spinach leaf rinsates using a real-time Xenogen IVIS imaging system resulted in detection of 1 CFU mL−1 within approximately 4 h after a 2-h pre-incubation. Detection in ground beef was not successful, however, presumably due to the natural occurrence of quorum sensing autoinducer (N-3-(oxohexanoyl)-l-homoserine lactone; OHHL), which generated false-positive bioreporter signals in the ground beef samples.  相似文献   

17.
Tandem repeat multimers of Momordica charantia (MC) peptide MC6 were designed and the recombinant plasmid containing 10 copies of MC6 gene was constructed to improve the expression level of MC6 in Escherichia coli. Under the selected conditions of cultivation and induction, the expression level of recombinant TrxA–MC610 protein was above 25% of total bacteria protein. This fusion protein was purified and cleaved with HCl (13%, w/v). Either the un-cleaved or cleaved recombinant proteins was analyzed pharmacological activity by alloxan-induced diabetic mice and only the cleaved products of the recombinant protein showed significant hypoglycemic effects. The study provides a convenient and economical method for the large-scale production of anti-diabetic medicines for pharmaceutical applications.  相似文献   

18.
Fusarium proliferatum was isolated as a major pathogen causing the Fusarium disease in harvested banana fruit. One of its major compounds, fusaric acid, was identified by high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI–MS). Because the light intensity of the luminescent bacterium Vibrio qinghaiensis sp. Nov. Q67 can be inhibited by fusaric acid, the fusaric acid content of F. proliferatum was assessed and compared by both the HPLC and luminescent bacterium methods. Although both methods afforded almost similar values of fusaric acid, the latter indicated slightly lower content than the former. Czapek medium was more suitable for the growth of F. proliferatum and fusaric acid production than modified Richard medium, with an optimum pH of approximately 7.0. However, no significant (P < 0.05) correlation was obtained between the fusaric acid production and growth of mycelia of F. proliferatum. The study suggests that the bioevaluation by use of the luminescent bacterium was effective in monitoring fusaric acid production by F. proliferatum without expensive equipment.  相似文献   

19.
Summary. Secreted peptides from diverse sources have been found to contain a d-amino acid. From the sequence of cloned mRNAs coding for the precursors of such peptides it could be deduced that in all cases tested so far the d-amino acid in the final product is derived from the corresponding l-amino acid present in the primary product of translation. Enzymes catalyzing such an l- to d-isomerization in peptide linkage have been isolated from the venom of a spider and the skin secretions of frogs. Even though these are completely different proteins, the reaction mechanism is the same, namely a de-protonation/re-protonation of the α-carbon of an amino acid with concomitant inversion of the chirality. Sequences potentially coding for homologues of the frog enzyme are present in the genome of different vertebrate species.  相似文献   

20.
d-Lactic and l-lactic acids were simultaneously determined by means of a column-switching high-performance liquid chromatography (HPLC) with fluorescence detection. As a fluorescence reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was employed for the fluorescence derivatization of lactic acid. The proposed HPLC system adopted both octylsilica (Cadenza CD-C8) and amylose-based chiral columns (CHIRALPAK AD-RH), which proved to give a sufficient enantiomeric separation of the lactic acid derivatives with a separation factor () of 1.32 and a resolution (Rs) of 1.98. Moreover, the features of the first elution of d-lactic acid peak in the proposed HPLC were convenient for the determination of trace amount of serum d-lactic acid, which is known to increase under diabetes. Intra-day and inter-day accuracies were in the range of 90.5–101.2 and 89.0–100.7%, and the intra-day and inter-day precisions were 0.3–1.2 and 0.4–4.8%, respectively. The proposed method was applied to determine d-lactic and l-lactic acids in human serum of normal subjects and diabetic patients, showing that both d-lactic and l-lactic acid concentrations were significantly increased in the serum of diabetic patients (n=31) as compared with normal subjects (n=21). This fact was found for the first time owing to the development of the proposed HPLC method which is able to determine d-lactic and l-lactic acid simultaneously. Finally, serum d-lactic acid concentrations determined by the proposed HPLC method were compared with those from a reported enzymatic assay, and the smaller p value between normal subjects and diabetic patients was shown by the proposed HPLC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号