首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have used scarce available data on the detonation cell size in suspensions of aluminium particles in air and oxygen to adjust the kinetic parameters of our two-phase model of detonations in these mixtures. The calculated detonation cell width was derived by means of two-dimensional (2D) unsteady simulations using an assumption of cylindrical symmetry of the flow in the tube. However, in reality, the detonation cells are three-dimensional (3D). In this work, we have applied the same detonation model which is based on the continuous mechanics of two-phase flows, for 3D numerical simulations of cellular detonation structures in aluminium particle suspensions in oxygen. Reasonable agreement on the detonation cell width was obtained with the aforementioned 2D results. The range of tube diameters where detonations in $\text{ Al/O}_2$ mixture at a given particle size and concentration would propagate in the spinning mode has been estimated (these results make a complement to our previous analysis of spinning detonations in Al/air mixtures). Coupling these results with the dependencies of detonation cell size on the mean particle diameter is of great interest for the understanding of fundamental mechanisms of detonation propagation in solid particle suspensions in gas and can help to better guide the experimental studies of detonations in aluminium suspensions. It is shown that the part of detonation wave energy used for transverse kinetic energy of both gas and particles is quite small, which explains why the propagation velocity of spinning and multi-headed detonations reasonably agrees with the ideal CJ values.  相似文献   

2.
Abstract. Two-dimensional numerical simulations of detonations in two-phase lean mixtures of aluminum particles and pure oxygen have been performed. The computational procedure adopts an adaptive mesh refinement methodology in order to increase spatial resolution in the most interesting parts of the flow field. A one-step heterogeneous reaction describes the evaporation and combustion of aluminum. Depending on the gas-phase temperature, the combustion product is aluminum oxide or aluminum monoxide. The results show that the heterogeneous detonations resemble gaseous single-phase ones although the scale of the phenomena is very different. The detonation of aluminum dust evolves into the 2-headed mode of propagation with the characteristic detonation cell width equal to cm. For aluminum dust the cellular structure is much finer. The detonation initially propagates in the 11-headed mode with the characteristic cell width equal to cm and evolves into the 8.5-headed mode with the characteristic cell size $\lambda_{\rm cell}$ equal to cm. Received 7 May 2001 / Accepted 25 March 2002 Published online 23 January 2003 Correspondence to: K. Benkiewicz (e-mail: kbenk@cow.me.aoyama.ac.jp)  相似文献   

3.
The cellular detonation structure has been recorded for hybrid hydrogen/air/aluminium mixtures on 1.0 m 0.110 m soot plates. Addition of aluminium particles to the gaseous mixture changes its detonation velocity. For very fine particles and flakes, the detonation velocity is augmented and, in the same time, the cell width diminishes as compared with the characteristic cell size of the mixture without particles. On the contrary, for large particles, the detonation velocity decreases and the cell size becomes larger than . It appears that the correlation law between the cell size and the detonation velocity in the hybrid mixture is similar to the correlation between the cell size and the rate of detonation overdrive displayed for homogeneous gaseous mixtures. Moreover, this correlation law remains valid in hybrid mixtures for detonation velocities smaller than the value D of the mixture without particles. Received 10 May 2001 / Accepted 12 August 2002 Published online 19 December 2002 Correspondence to: B. Veyssiere (e-mail: veyssiere@lcd.ensma.fr)  相似文献   

4.
采用一种两步化学反应模型对胞格爆轰波的楔面马赫反射过程进行了数值研究,从而澄清和解释胞格不稳定性对马赫反射发展模式和自相似性的影响。考虑到反应欧拉方程源项的刚性问题,本文采用附加RungeKutta方法耦合非刚性对流项和刚性反应源项,对流项的离散采用五阶精度的WENO格式。计算结果表明,对于稳定胞格爆轰波而言,其马赫反射过程本质上与ZND爆轰波的马赫反射是一致的,整体上不存在自相似性,胞格不稳定性只是造成了三波点轨迹线局部小振幅的波动。在楔面顶点附近,由于马赫杆是强过驱的,爆轰波的马赫反射过程是自相似的。在远场,爆轰波马赫反射的三波点轨迹线渐近的趋向于一条直线,说明重新获得了自相似性。对于不稳定的爆轰波,由于自身的不稳定性可以与马赫反射的强度相匹配,定义其三波点的轨迹是困难的,进行自相似性分析没有意义。  相似文献   

5.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

6.
Formation of cellular detonation in bi-fractional stoichiometric mixtures of aluminum particles and oxygen is investigated numerically. The detonation cell size depends on the particle diameters and relative concentration of the fractions. Certain degeneration of cellular detonation is obtained when compared to the monodisperse mixtures. It is characterized by maximal pressure decrease, transverse wave relaxation and detonation front rectification. Complete degeneration of cellular detonations and stable propagation of a plane detonation front is found in some bi-fractional mixtures. The numerical results are confirmed by acoustic analysis of the detonation structures. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

7.
Analysis of the shock structures in a regular detonation   总被引:1,自引:0,他引:1  
Time-dependent two-dimensional numerical simulations have been used to investigate the detailed shock structures and patterns of energy release in the regions of the triple points and transverse waves in a planar detonation. As the system of shock triple points evolves between collisions, they trace a well shaped cellular pattern characteristic of detonations in argon-diluted, low-pressure mixtures of hydrogen and oxygen. In the region of the triple points, the shock structure evolves continuously from a single Mach structure to a double Mach structure and finally to a complex Mach structure characteristic of spinning detonations. Most of the energy released in the region of the triple points. The amount of energy release increases as the triple point comes closer to a collision with a wall or another triple point. Just before the collision, there is a large region of energy release that covers the length of the interacting transverse waves. The result is a rectangular high-energy region which boosts the propagation of the new detonation cell.  相似文献   

8.
A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a “marked” double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.  相似文献   

9.
气相爆轰物理的若干研究进展   总被引:1,自引:0,他引:1  
爆轰现象的研究已经有一百多年的历史了,爆轰物理的研究取得了许多重要进展.本文从爆轰波的经典理论、胞格爆轰波的多波结构、气相爆轰波形成机理、气相爆轰波传播机制等方面综述了相关的若干研究进展,评述了这些进展的科学性与局限性,并探讨了将来可能的研究方向.这些研究进展主要包括:CJ(Chapman-Jouguet)理论和ZND(Zel'dovich,von Neumann,D?ring)模型、爆轰波多波结构、爆轰胞格特征、直接起爆和爆燃转爆轰过程、热点起爆机制、爆轰波稳定性、扰动爆轰波的传播等.爆轰波是以超声速传播的自持燃烧现象,涉及了激波相互作用、燃烧化学反应、湍流扩散和流动不稳定性等复杂的气动物理过程,相关研究具有重要的学科理论意义.另外,爆轰燃烧具有高效的热化学能释放特点,在先进的热力推进技术方面有着重要的应用背景,因此相关研究也具有重要的工程应用价值.   相似文献   

10.
Detonation experiments in H2–NO2/N2O4–Ar mixtures (Equivalence ratio 1.2 and initial pressure lower than 0.1 MPa) confined in a tube of internal diameter 52 mm reveal two propagation regimes depending on initial pressure: (1) a quasi-CJ regime is observed along with a double cellular structure at high pressures; (2) at lower pressures, a low velocity detonation regime is observed with a single structure. Transition between this two regimes happens when the spinning detonation of the larger cell vanishes. Each detonation regime is characterized by velocity and pressure measurements and cellular structure records. Coherence between all experimental data for each experiment leads in assumption that losses are responsible for the transition between one regime to another. In a second part, we study such behaviour for a two-step mixture through numerical simulations using a global two-step chemical kinetics and a simple losses model. Numerical simulations qualitatively agree with experiments. Both detonation regimes with their own cellular structures are reproduced.  相似文献   

11.
陈达  宁建国  李健 《力学学报》2021,53(10):2865-2879
气相爆轰波在周期性非均匀介质中的起爆, 稳态传播和失效机制都极为复杂, 很多物理机制尚不明确, 是当前爆轰物理领域研究的热点和难点. 本文使用反应欧拉方程和两步化学反应模型对爆轰波在非均匀介质中的传播机理进行了数值模拟研究, 非均匀性由横向周期性分布的温度扰动体现, 重点分析不同波长、不同幅度的温度扰动对波阵面波系结构的影响. 计算结果表明, ZND爆轰波在温度扰动下向胞格爆轰波的转变主要受制于两种竞争性因素: 一是爆轰波内在的不稳定性; 二是温度扰动的波长和幅度, 前者是内因, 后者是外因. 温度扰动的存在抑制横波的发展, 延迟了ZND爆轰波向胞格爆轰波的演化, 并且内在不稳定性的增加可以减慢这种延迟现象. 这说明, 温度扰动可以在一定的范围内抑制胞格不稳定性的发展, 但是不能够终止这一过程. 温度的不连续性使得爆轰波阵面更为扭曲, 并在横波附近存在较弱的三波点结构, 即温度扰动可增加爆轰波固有的不稳定性, 改变爆轰波阵面的传播机理. 幅值较大的人工温度扰动可抑制爆轰波的传播和爆轰波自身的不稳定性. 爆轰波阵面胞格结构的形成取决于温度扰动与其自身的不稳定性.   相似文献   

12.
The problem of propagation of steady nonideal detonations in heterogeneous hybrid mixtures is studied in the case of a hydrogen-air gaseous mixture with suspended fine aluminum particles. Due to the difference in the order of magnitude of the characteristic induction and combustion times of gaseous mixture and solid particles, the process of energy release behind the leading shock front occurs over an extended period of time and in a nonmonotonic way. An approximate numerical model has been improved to find the steady propagation regimes and investigate their structure. The problem is analyzed in the frame of the theory of the mechanics of multiphase media with mass, momentum and heat exchanges between particles and gases. The one-dimensional ZND model of detonation with losses to the lateral boundaries is used. It is shown that three different steady propagation regimes may exist: the Pseudo-Gas Detonation (PGD), the Single-Front Detonation (SFD) and the Double-Front Detonation (DFD). The numerical results match the available experimental results obtained previously. The influence of the fundamental parameters of the system on the domains of existence of the different regimes is displayed. Moreover, it is shown that, according to the theory of nonideal detonations with nonmonotonic energy release, there may exist a multiplicity of detonation modes. However, the total number of solutions actually obtained by numerical calculations differs from that predicted by the theory. The reasons for these discrepancies are discussed.  相似文献   

13.
2021-08期封面     
铝粉反应模型是对悬浮铝粉尘气-固两相爆轰进行数值模拟研究的关键。通过考虑铝粉燃烧产物氧化铝(Al2O3)在高温下的分解吸热反应,改进了铝粉的扩散燃烧模型。将该模型嵌入到三维的气-固两相爆轰数值计算程序中,分别对铝粉/空气混合物以及铝粉/氧气混合物的爆轰进行了数值模拟,计算得到的稳定爆轰波速度与实验结果、文献值均吻合较好,误差小于5.5%,表明改进的铝粉反应模型适用于不同氧化气体氛围中铝粉尘爆轰的模拟计算。此外,对两相爆轰参数及爆轰流场的物理量分布进行分析,获得了铝粉反应模型对爆轰波结构的影响规律。  相似文献   

14.
Numerical modeling of the propagation of shock and detonation waves is carried out in a duct with an abrupt expansion for a heterogeneous mixture of fine particles of aluminum and oxygen. A considerable difference from corresponding flows in pure gas is found. The influence of the size and mass loading of particles on the flow and shock wave structure behind the backward-facing step is determined. As in gaseous detonations, three types of scenarios of detonation development are obtained. Specific features of the flow structure are revealed such as deformation of the combustion front due to interaction between the relaxation zone and the vortex structure. The influence of particle size and channel width on detonation propagation is analyzed. This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

15.
Wave dynamic processes in cellular detonation reflection from wedges   总被引:4,自引:0,他引:4  
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H 2/O 2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes. The English text was polished by Yumming Chen.  相似文献   

16.
The problem of detonation initiation is studied in the case of hybrid two-phase mixtures consisting of a hydrogen-air gaseous mixture with suspended fine aluminium particles. In preceding works on this subject, investigation of the steady propagation regimes has shown that three main propagation regimes could exist: the Pseudo-Gas Detonation (PGD), the Single-Front Detonation (SFD), and the Double-Front Detonation (DFD). In the present study, a one-dimensional unsteady numerical code has been improved to study the build-up of the detonation in a heterogeneous solid particle gas mixture contained in a tube. The initiation is simulated by the deposition of a given energy in a point source explosion, and the formation of the detonation is observed over distances of 15 m to 30 m. As the code has been designed to run on a micro-computer, memory limitations preclude sufficient accuracy for quantitative results, however, good qualitative agreement has been found with the results of the steady analysis. In addition, it has been demonstrated that when both PGD and SFD could exist at the same particle concentration, the PGD regime was unstable and was able to exist only over a limited distance (a few meters): after some time, the reaction of aluminium particles in the unsteady flow perturbs the leading wave and accelerates it to the SFD regime. Influence of particle diameter and of initiation energy are examined.  相似文献   

17.
This paper summarizes the studies of DDT and stable detonation waves in dust-air mixtures at the Stosswellenlabor of RWTH Aachen. The DDT process and propagation mechanism for stable heterogeneous dust detonations in air are essentially the same as in the oxygen environment studied previously. The dust DDT process in tubes is composed of a reaction compression stage followed by a reaction shock stage as the pre-detonation process. The transverse waves that couple the shock wave and the chemical energy release are responsible for the propagation of a stable dust-air detonation. However, the transverse wave spacing of dust-air mixtures is much larger. Therefore, DDT and propagation of a stable detonation in most industrial and agricultural, combustible dust-air mixtures require a tube that has a large diameter between 0.1 m and 1 m and a sufficient length-diameter ratio beyond 100, when an appropriately strong initiation energy is used. Two dust detonation tubes, 0.14 m and 0.3 m in diameter, were used for observation of the above-mentioned results in cornstarch, anthraquinone and aluminum dust suspended in air. Smoked-foil technique was also used to measure the cellular structure of dust detonations in the 0.3 m detonation tube. Received 11 February 2000 / Accepted 1 August 2000  相似文献   

18.
Propagation of near-limit gaseous detonations in small diameter tubes   总被引:3,自引:0,他引:3  
In this study, detonation limits in very small diameter tubes are investigated to further the understanding of the near-limit detonation phenomenon. Three small diameter circular tubes of 1.8, 6.3, and 9.5 mm inner diameters, of 3 m length, were used to permit the near-limit detonations to be observed over long distances of 300 to 1500 tube diameters. Mixtures with high argon dilution (stable) and without dilution (unstable) are used for the experiments. For stable mixtures highly diluted with argon for which instabilities are not important and where failure is due to losses only, the limit obtained experimentally appears well to be in good agreement in comparison to that computed by the quasi-steady ZND theory with flow divergence or curvature term modeling the boundary layer effects. For unstable detonations it is suggested that suppression of the instabilities of the cellular detonation due to boundary conditions is responsible for the failure of the detonation wave. Different near-limit propagation regimes are also observed, including the spinning and galloping mode. Based on the present experimental results, an attempt is made to study an operational criterion for the propagation limits of stable and unstable detonations.  相似文献   

19.
The existence of a secondary discontinuity at the rear of a detonation front shown in experiments by Peraldi and Veyssiere (1986) in stoichiometric hydrogen-oxygen mixtures with suspended 20-m starch particles has not been explained satisfactorily. Recently Veyssiere et al. (1997) analyzed these results using a one-dimensional (1-D) numerical model, and concluded that the heat release rate provided by the burning of starch particles in gaseous detonation products is too weak to support a double-front detonation (DFD), in contrast to the case of hybrid mixtures of hydrogen-air with suspended aluminium particles in which a double-front detonation structure was observed by Veyssiere (1986). A two-dimensional (2-D) numerical model was used in the present work to investigate abovementioned experimental results for hybrid mixtures with starch particles. The formation and propagation of the detonation has been examined in the geometry similar to the experimental tube of Peraldi and Veyssiere (1986), which has an area change after 2 m of propagation from the ignition point from a 69 mm dia. section to a 53 mm 53 mm square cross section corresponding to a 33% area contraction. It is shown that the detonation propagation regime in these experiments has a different nature from the double-front detonation observed in hybrid mixtures with aluminium particles. The detonation propagates as a pseudo-gas detonation (PGD) because starch particles release their heat downstream of the CJ plane giving rise to a non-stationary compression wave. The discontinuity wave at the rear of the detonation front is due to the interaction of the leading detonation front with the tube contraction, and is detected at the farthest pressure gauge location because the tube length is insufficient for the perturbation generated by the tube contraction to decay. Thus, numerical simulations explain experimental observations made by Peraldi and Veyssiere (1986). Received 5 July 1997 / Accepted 13 July 1998  相似文献   

20.
A.M. Milne 《Shock Waves》2000,10(5):351-362
The mechanisms of detonation propagation in heterogeneous systems comprising closely packed particles and a liquid explosive are not fully understood. Recent experimental work has suggested the presence of two distinct modes of detonation propagation. One mode is valid for small particles (which is the regime we will address in this paper) with another mode for large particles. In this work we model numerically the detail of the wave interactions between the detonating liquid and the solid particles. The generic system of interest in our work is nitromethane and aluminium but our methodology can be applied to other liquids and particles. We have exercised our numerical models on the experiments described above. Our models can now qualitatively explain the observed variation in critical diameter with particle size. We also report some initial discrepancies in our predictions of wave speeds in nominally one dimensional experiments which can be explained by detailed modelling. We find that the complex wave interaction in the flow behind the leading shock in the detonating system of liquid and particles is characterised by at least two sonic points. The first is the standard CJ point in the reacting liquid. The second is a sonic point with respect to the sound speed in the inert material. This leads to a steady state zone in the flow behind the leading shock which is much longer than the reaction zone in the liquid alone. The width of this region scales linearly with particle size. Since the width of the subsonic region strongly influences the failure diameter we believe that this property of the flow is the origin of the observed increase in failure diameter with particle size for small inert particles. Received 3 December 1999 / Accepted 5 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号