首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plates are considered. Using the asymptotic homogenization method the original boundary-value problems are reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. In the present paper the perforated plates with large holes are considered, and the singular perturbation method is used to solve the pertinent unit cell problems. Matching of limiting solutions for small and large holes using the two-point Padé approximants is also accomplished, and the analytical expressions for the effective stiffnesses of perforated plates with holes of arbitrary sizes are obtained.  相似文献   

2.
The state of stress and strain of previously loaded viscoelastic bodies with holes originating in them, successively or simultaneously, is analyzed under finite plane deformations. The problem statement and solution are based on the theory of repeatedly superimposed large deformations. The material mechanical properties are described using integral relations of the convolution type over time with a weakly singular kernel. The problem solving is based on the finite-element method. To calculate the integral of the convolution type, a recurrence formula is used that can be obtained by approximating the initial kernel with a linear combination of exponential functions (the truncated Prony’s series). The nonlinear effects and the effect of the interaction between holes on the stress concentration are analyzed. For the dynamic problems, the results for incompressible and weakly compressible materials are compared.  相似文献   

3.
Based on complex variables and conformal mapping, the elastic wave scat- tering and dynamic stress concentrations in the plates with two holes are studied by the refined dynamic equation of plate bending. The problem to be solved is changed to a set of infinite algebraic equations by an orthogonM function expansion method. As examples, under free boundary conditions, the numerical results of the dynamic moment concen- tration factors in the plates with two circular holes are computed. The results indicate that the parameters such as the incident wave number, the thickness of plates, and the spacing between holes have great effects on the dynamic stress distributions. The results are accurate because the refined equation is derived without any engineering hypothese.  相似文献   

4.
The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of circular holes is determined. Based on the addition theorem, the solution of the field represented by multiple coordinate systems centered at each circle can be transformed into one coordinate system centered at one circle, where the boundary conditions are given. In this way, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the scattering of flexural wave by multiple holes in an infinite plate subject to the incident flexural wave. The formulation is general and is easily applicable to dealing with the problem containing multiple circular holes. Although the number of hole is not limited in our proposed method, the numerical results of an infinite plate with three circular holes are presented in the truncated finite system. The effects of both incident wave number and the central distance among circular holes on the DMCF are investigated. Numerical results show that the DMCF of three holes is larger than that of one, when the space among holes is small and meanwhile the specified direction of incident wave is subjected to the plate.  相似文献   

5.
由于订型分布孔的存在,通常的有限元法不能有效地分析多孔板的弯曲问题。该文基于均匀化理论建立了该类问题的新解法。对含密集型分布的阶梯型圆孔板的分析结果,说明了该文方法是有效的。  相似文献   

6.
Static problems for the elastic plates and rods periodically perforated by small holes of different shapes are solved using the asymptotic approach based on the combination of the asymptotic technique and the multi-scale homogenization method. Using the asymptotic homogenization method the original boundary-value problem is reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. The combination of the perturbation method and the technique of successive approximations is applied for the solution of the unit cell problems. Taking into the account small size of holes the method of perturbation of the shape of the boundary and the Schwarz alternating method are used. The problems of torsion of a rod with perforated cross-section; deflection of the perforated membrane loaded by a normal load; and bending of perforated plates with circular and square holes are considered consecutively. The error of the applied asymptotic techniques is estimated and the high accuracy of the obtained solutions is demonstrated.  相似文献   

7.
针对含有间断的非均匀材料的断裂问题,本文将虚节点多边形单元的形函数引入到扩展有限元(XFEM)中,提出了一种基于四叉树结构的动态网格细化方法,该方法可对间断面附近单元实现可调控的多层级细化,特别是对于裂纹扩展问题,可实现裂尖附近单元的动态网格细化与粗化。基于以上网格细化方法,本文提出了针对非均匀材质裂纹扩展问题的计算方法VP-XFEM。为验证算法的准确性与计算效率,针对含有孔洞及材料界面的断裂问题,本文给出了相应的算例。结果显示,与传统的一致性网格的XFEM相比,VP-XFEM能够明显改善计算精度与计算效率。  相似文献   

8.
This paper describes the method for solving the problems of linear viscoelasticity for thin plates under the influence of bending moments and transverse forces. The small parameter method was used to reduce the original problem to a sequence of boundary-value problems solved via complex potentials of the bending theory of multiply connected anisotropic plates. The general representations of complex potentials and boundary conditions for their determination are obtained. The method for determining the stress state of the plate at any time with respect to complex approximation potentials is developed by replacing the powers of the small parameter by the Rabotnov operators. The problem of a plate with elliptical holes is solved. The numerical calculation results in the case of a plate with one or two holes are given. The variation of bending moments in time until stationary condition is reached is studied, and the influence of geometric characteristics of the plate on these variable is described.  相似文献   

9.
The photoelastic method is used to analyze the stress–strain state induced by an impulsive load in an orthotropic plate with circular holes. The distribution of dynamic stress concentration factors along the periphery of the holes is studied, and stresses and strains in representative sections are determined  相似文献   

10.
Reissner板弯曲的复变函数分析方法   总被引:1,自引:0,他引:1  
吕品  黄茂光 《力学学报》1990,22(6):689-699
本文建立了Reissner板弯曲问题的复变函数分析方法,它可以有效地用于分析含一般孔洞板弯曲的应力集中问题。作为应用,文中还给出了一些计算实例。  相似文献   

11.
The effects of surface energy on the interaction between holes or edge are investigated. Three typical problems are discussed: (1) an infinite plate containing two holes of unequal size subjected to an all-round tension, (2) a circle disc containing an eccentric hole subjected to uniform pressure on either external or internal surface, (3) a semi-infinite plate containing an unstressed circular hole subjected to a uniform tension parallel to its straight edge. The problems are solved by series expansion in bipolar coordinates. The results show that the surface energy significantly affects the stress concentrations around the holes as the size of the holes shrinks to nanometers. Meanwhile, the interaction between the holes or edge influences the stress distribution around the holes or edge, which becomes evident as the holes or edge close to each other and is affected by the surface effect significantly.  相似文献   

12.
The dynamic fracture of plates weakened by holes with edge cracks and subjected to impulsive loading is studied using the dynamic photoelastic method. The time dependences of the stress intensity factors and the crack growth rate are examined for three models of plates with circular holes and edge cracks __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 79–84, February 2006.  相似文献   

13.
The three-dimensional linearized theory of elastic waves in initially stressed bodies under plane strain is used to study the influence of the initial stretching of a simply supported plate strip with two neighboring circular holes on the stress concentration around the holes caused by additional uniformly distributed dynamic (time-harmonic) normal forces acting on the upper face. The corresponding problem is formulated and solved by the finite-element method. Numerical results on the stress concentration around the holes and the influence of the initial stretching on this concentration are presented Published in Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 135–140, October 2007.  相似文献   

14.
Conclusions Our analysis of specific numerical results for nonclassical problems has thus established two conclusions.1. The stresses do not increase monotonically as the holes are brought closer together (in the case of problems for shells under static loading and for plates under dynamic loading).2. For several holes in the case of problems for plates under dynamic loading, the maxima of the stress concentration factors can occur in the interior of the main region rather than at the edges of the holes, depending on the frequency and form of the applied load.These conclusions do not apply to classical problems (the planar problem under static loading) and must therefore be taken into account when stress concentrations are created.Because of space limitations, the concluding part of this article was not included in the EPMESC'92 Conference Proceedings and is therefore published here in its entirety.This is the complete text of a paper that was presented by the author at the EPMESC'92 International Conference in Talien, China, June 30-August 2, 1992, but was not published in its entirely in the Conference Proceedings.S. P. Timoshenko Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 4, pp. 6–13, April, 1994.  相似文献   

15.
The problem of collinear periodic elliptic holes in an anisotropic medium is examined in this paper. By means of Stroh formalism and the conformal mapping method, explicit full domain solutions for the periodic hole problems are presented. The solutions are valid not only for plane problems but also for antiplane problems and the problems whose implane and antiplane deformations are coupled. The stress concentration around the holes is analysed.  相似文献   

16.
含孔平板弹性波散射问题的复变函数方法   总被引:1,自引:0,他引:1  
胡超  马兴端 《力学季刊》1998,19(2):87-92
本文采用平板弯曲波动理论及复变函数方法,对平板开孔弹性波的散射及动应力集中问题进行了分析研究,得到了传播急剧记波时此种平板弯曲波动问题的分析解。若同时采用保角射技术,就为主解平板任意形状开孔弹性波的散射及动应力集中问题提供了一种统一规范的方法。作为算例,本文给出了平板开圆孔和椭圆孔附近的动应力集中系数的数值结果,并对其进行了讨论。  相似文献   

17.
A procedure is developed for simultaneous shape and topology design optimization of linear elastic two-dimensional continuum structures. An intuitive approach is presented to treat such topological problems whereby material is eliminated from within the structure (by introducing holes at regions of low stress) through a sequence of shape optimization processes. A mathematical programming technique coupled with the boundary element (BE) method of response and sensitivity analyses enables the optimal positioning of these holes plus optimization of the overall structural shape. The analytical derivative BE formulation is explained together with the use of appropriate design velocity fields, and example problems are solved to demonstrate the optimization procedure.  相似文献   

18.
This paper deals with fundamental-solution methods applied to stress-concentration problems for thin elastic shells. Publications concerned with the relevant division of the theory of plates and shells are reviewed. The theories behind the methods are described, and specific results for static and dynamic concentrated loads are presented. The capabilities of the methods are illustrated by fracture problems for orthotropic shells with notches and holes under mechanical loading and for isotropic shells with notches under thermal loading __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 3–25, July 2007.  相似文献   

19.
Results on stress concentration in thin shells with curvilinear holes subject to plastic deformation and finite deflections are reviewed. The holes (circular, elliptical) are reinforced with thin-walled elements (rings, rods) of different stiffness. A numerical method of solving doubly nonlinear problems of statics for shells of complex geometry is outlined. The stress distribution near curvilinear holes in spherical, cylindrical, and conical shells under statical loading is studied. The numerical results are analyzed  相似文献   

20.
采用有限元方法研究爆炸载荷下四边固支孔结构金属复合夹芯板的动力响应及吸能特性,给出了孔结构金属复合夹芯板的动力响应过程,得到夹芯板的变形模式,比较了孔结构金属复合夹芯板与非孔结构金属复合夹芯板的抗爆炸冲击性能,同时讨论了孔大小、间距、排布方式和面板质量分布等因素对孔结构金属复合夹芯板抗爆炸冲击性能的影响。研究结果表明,迎爆面外面板的孔设计使爆炸冲击波穿过孔洞直接作用在芯材上,增强了芯材的压缩,从而提高了夹芯板的能量吸收能力。同等面密度情况下,内外面板厚度比大于1的孔结构金属复合夹芯板变形挠度小于内外面板厚度比小于1的孔结构金属复合夹芯板。进一步研究发现,通过合理设计内外面板的质量分布,可以使孔结构金属复合夹芯板的抗爆炸冲击性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号