首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Alpha-tocopherol (alpha-TOH) can be electrochemically oxidized in CH(3)CN containing Bu(4)NPF(6) in a chemically reversible two-electron/one-proton (ECE) process to form the phenoxonium cation (alpha-TO(+)) that is stable for at least several hours at 243 K. In the presence of up to approximately 1% CF(3)SO(3)H, alpha-TO(+) exists in equilibrium with the alpha-tocopherol cation radical (alpha-TOH(+)(*)), whereas at concentrations between approximately 1-3% CF(3)SO(3)H the electrochemical oxidation of alpha-TOH occurs by close to one-electron to form alpha-TOH(+)(*).alpha-TOH(+)(*) can be further oxidized in a one-electron process to form the alpha-tocopherol dication (alpha-TOH(2+)). The identity and stability of the phenolic cationic compounds were determined by a combination of electrochemical (cyclic voltammetry and controlled potential electrolysis) and in situ spectroscopic (UV-vis-NIR, FTIR, EPR, and NMR) analysis.  相似文献   

2.
6-(Ethylthio)-, 6-(ethylseleno)-, and 6-(ethyltelluro)-2,2,4-trimethyl-1,2-dihydroquinoline-three heavier chalcogen analogues of ethoxyquin-were prepared by dilithiation of the corresponding 6-bromodihydroquinoline followed either by treatment with the corresponding diethyl dichalcogenide (sulfur derivative) or by insertion of selenium/tellurium into the carbon-lithium bond, oxidation to a diaryl dichalcogenide, borohydride reduction, and finally alkylation of the resulting areneselenolate/arenetellurolate. Ethoxyquin, its heavier chalcogen analogues, and the corresponding 6-PhS, 6-PhSe, and 6-PhTe derivatives were assayed for both their chain-breaking antioxidative capacity and their ability to catalyze reduction of hydrogen peroxide in the presence of a stoichiometric amount of a thiol reducing agent (thiol peroxidase activity). Ethoxyquin itself turned out to be the best inhibitor of azo-initiated peroxidation of linoleic acid in a water/chlorobenzene two-phase system. In the absence of N-acetylcysteine as a coantioxidant in the aqueous phase, it inhibited peroxidation as efficiently as alpha-tocopherol but with a more than 2-fold longer inhibition time. In the presence of 0.25 mM coantioxidant in the aqueous phase, the inhibition time was further increased by almost a factor of 2. This is probably due to thiol-mediated regeneration of the active antioxidant across the lipid-aqueous interphase. The ethyltelluro analogue 1d of ethoxyquin was a similarly efficient quencher of peroxyl radicals compared to the parent in the two-phase system, but less regenerable. Ethoxyquin was found to inhibit azo-initiated oxidation of styrene in the homogeneous phase (chlorobenzene) almost as efficiently (kinh = (2.0 +/- 0.2) x 106 M-1 s-1) as alpha-tocopherol with a stoichiometric factor n = 2.2 +/- 0.1. At the end of the inhibition period, autoxidation was additionally retarded, probably by ethoxyquin nitroxide formed during the course of peroxidation. The N-H bond dissociation enthalpy of ethoxyquin (81.3 +/- 0.3 kcal/mol) was determined by a radical equilibration method using 2,6-dimethoxyphenol and 2,6-di-tert-butyl-4-methylphenol as equilibration partners. Among the investigated compounds, only the tellurium analogues 1d and, less efficiently, 1g had a capacity to catalyze reduction of hydrogen peroxide in the presence of thiophenol. Therefore, analogue 1d is the only antioxidant which is multifunctional (chain-breaking and preventive) in character and which can act in a truly catalytic fashion to decompose both peroxyl radicals and organic hydroperoxides in the presence of suitable thiol reducing agents.  相似文献   

3.
The antioxidant alpha-tocopherol (alpha-TOH) has been found to act as a pro-oxidant under many in vitro conditions. The observed tocopoherol-mediated peroxidation (TMP) is dependent on two primary factors. (1) Chain transfer: alpha-TO. radical reacts with lipid to form lipid peroxyl radicals. (2) Phase transfer: alpha-TOH can transport radical character into the lipoprotein. Given the limitations of existing initiators, there is a need for new compounds that avoid the requirement for alpha-TOH to act as a phase-transfer agent. We report here a study showing that the new unsymmetrical azo compound, C-8, initiates LDL lipid peroxidation without requirement for alpha-TOH. This initiator provides a steady source of free amphiphilic peroxyl radicals that efficiently initiates oxidation of alpha-TOH-depleted LDL at a rate comparable to that reported for the very reactive hydroxyl radical (.OH). With other initiators tested, unsymmetrical C-12 and C-16 and symmetrical C-0 and MeOAMVN, alpha-TOH-depleted LDL displayed significant resistance to oxidation. Results indicate that the amphiphilic nature of the unsymmetrical initiators increases their partitioning into lipoprotein depending on the hydrocarbon chain length, and the symmetrical azo initiators C-0 and MeOAMVN primarily remain in the aqueous phase. Evidence suggests that even when the phase-transfer activity of alpha-TOH is limited, with the use of an initiator such as C-8, the mechanism of peroxidation remains controlled by TMP chain-transfer activity.  相似文献   

4.
Recently we demonstrated that the C(7)-unsubstituted tetrahydro-1,8-naphthyridin-3-ol has more than an order of magnitude better peroxyl radical trapping activity than alpha-tocopherol (alpha-TOH) in inhibited autoxidations in benzene. In order to prepare analogues more structurally related to alpha-TOH for further studies in vitro and in vivo, we developed synthetic approaches to C(7)-monoalkyl and C(7)-dialkyl analogues using a sequence involving (1) AgNO3-mediated hydroxymethyl radical addition to 1,8-naphthyridine, (2) regioselective alkyllithium addition by cyclic chelation in a nonpolar solvent, (3) iodination of the naphthyridine at C(3), and (4) CuI-medidated benzyloxylation of the aryl iodide followed by catalytic hydrogenolysis. An alpha-TOH isostere was prepared by a Wittig coupling of a C16 side chain identical to that of alpha-TOH to the naphthyridinols. The C(7)-mono- and dialkyl analogues exhibited more than an order of magnitude higher antioxidant activity (k(inh) = (5.3-6.1) x 10(7) M(-1) s(-1)) than alpha-TOH (k(inh) = 0.35 x 10(7) M(-) s(-1)) in benzene, as determined by a newly developed peroxyl radical clock. In addition to the strong antioxidant activity in benzene, the closest alpha-TOH analogue (naphthyridinol-based tocopherol, N-TOH) showed excellent inhibition of the oxidation of cholesteryl esters in human low-density lipoprotein and spared endogenous alpha-TOH in these experiments. Lateral diffusion of N-TOH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes was comparable to that of alpha-TOH, suggesting that it will have good antioxidant characteristics in both membranes and lipoproteins. Furthermore, a binding assay using a fluorescent tocopherol analogue showed that N-TOH binds to recombinant human tocopherol transfer protein better than alpha-TOH itself, suggesting that distribution of unnatural antioxidants such as N-TOH in vivo is possible.  相似文献   

5.
The antioxidant activity of alpha-tocopherol against the damaging hydroxyl radical was analyzed theoretically by hybrid density functional theory, following the direct dynamics method, where the thermal rate constants were calculated using variational transition-state theory with multidimensional tunneling. We found that the OH radical is only slightly or not at all selective, attacking by different mechanisms at several positions of the alpha-tocopherol molecule, giving competitive reactions. The most favorable pathways are the hydrogen abstraction reaction from the phenolic hydrogen and the electrophilic addition onto the aromatic ring. We propose a final rate constant, the sum of the competitive hydrogen abstraction and addition reactions, > or =2.7 x 10(8) M(-1) s(-1) at 298 K, where the hydrogen abstraction reaction represents only 20% of the total OH radical reaction. This result indicates that, molecule by molecule, in an apolar environment, alpha-tocopherol is less effective than coenzyme Q (which presents a rate constant of 6.2 x 10(10) M(-1) s(-1) at 298 K) as a scavenger of OH radicals. It was also found that both mechanisms are not direct but pass through intermediates in the entry channel, with little or no influence on the dynamics of the reactions. The hydrogen abstraction reaction also presents another intermediate in the exit channel, which may have a significant role in preventing the pro-oxidant effects of alpha-tocopherol, although less important than with free radicals other than OH.  相似文献   

6.
Despite being predicted to be stereoelectronically favorable by the Baldwin rules, efficient formation of a C-C bond through a 5-endo-dig radical cyclization remained unknown for more than 40 years. This work reports a remarkable increase in the efficiency of this process upon beta-Ts substitution, which led to the development of an expedient approach to densely functionalized cyclic 1,3-dienes. Good qualitative agreement between the increased efficiency and stereoselectivity for the 5-endo-dig cyclization of Ts-substituted vinyl radicals and the results of density functional theory analysis further confirms the utility of computational methods in the design of new radical processes. Although reactions of Br atoms generated through photochemical Ts-Br bond homolysis lead to the formation of cyclic dibromide side products, the yields of target bromosulfones in the photochemically induced reactions can be increased by recycling the dibromide byproduct into the target bromosulfones through a sequence of addition/elimination reactions at the exocyclic double bond. Discovery of a relatively efficient radical 5-endo-dig closure, accompanied by a C-C bond formation, provides further support to stereoelectronic considerations at the heart of the Baldwin rules and fills one of the last remaining gaps in the arsenal of radical cyclizations.  相似文献   

7.
This article describes the synthetic application of ketone-derived oxaziridines as alkyl radical precursors in copper-catalyzed Carbon-Carbon bond formation reactions. Experimental and computational studies indicate a free radical mechanism, where alkyl radicals are efficiently generated via cleavage of a Carbon-Carbon bond of oxaziridines. Acyclic and unstrained cyclic oxaziridines are applicable to the present radical process, allowing for the generation of various alkyl radicals with good functional group compatibility.  相似文献   

8.
The advantages of radical reactions for Organic Synthesis are summarised. Based on the idea of the disciplined radical, it is now possible to design radical reactions which afford a good yield of a single desired product. The system needs to contain a disciplinary group. In the case of radical reactions involving tin hydrides, it is the weak tin-hydrogen bond that is the disciplinary group. For the esters of thiohydroxamic acids, the disciplinary group is the thione function. Examples are given. Recent work has involved the design of stereospecific radical reactions. The hindrance around one chiral center is used to control the formation of the second. The ketal of (+)- (2R, 3R) tartaric acid gives excellent stereospecificity (≌24:1) with retention of configuration.  相似文献   

9.
The reaction of aromatic disulfides, alkynes, and isonitriles under photolytic conditions affords polyfunctionalized alkenes--beta-arylthio-substituted acrylamides or acrylonitriles--in fair yields through a novel three-component radical cascade reaction. The procedure entails addition of a sulfanyl radical to the alkyne followed by attack of the resulting vinyl radical to the isonitrile. A fast reaction, e.g., scavenging by a nitro derivative or beta-fragmentation, is necessary in order to trap the final imidoyl radical, since addition of vinyl radicals to isonitriles seems to be a reversible process. The stereochemistry of the reaction is discussed, particularly with respect to the stereochemical outcome of related hydrogen abstraction reactions by the same vinyl radicals. The lower or even inverted preference for either geometrical isomer observed in our cases with respect to that encountered in hydrogen abstraction reactions is explained in terms of transition-state interactions and/or isomerization of the final imidoyl radical. The latter possibility is supported by semiempirical calculations, which show that the spin distribution in the imidoyl radical can allow rotation of the adjacent carbon-carbon double bond prior to beta-fragmentation.  相似文献   

10.
The chemical properties of a 1,8-didehydronaphthalene derivative, the 4,5-didehydroisoquinolinium cation, were examined in the gas phase in a dual-cell Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. This is an interesting biradical because it has two radical sites in close proximity, yet their coupling is very weak. In fact, the biradical is calculated to have approximately degenerate singlet and triplet states. This biradical was found to exclusively undergo radical reactions, as opposed to other related biradicals with nearby radical sites. The first bond formation occurs at the radical site in the 4-position, followed by that in the 5-position. The proximity of the radical sites leads to reactions that have not been observed for related mono- or biradicals. Interestingly, some ortho-benzynes have been found to yield similar products. Since ortho-benzynes do not react via radical mechanisms, these products must be especially favorable thermodynamically.  相似文献   

11.
Sulfur-containing analogues of vitamin E (thiachromanols), either linked or not to a catechol moiety, were synthesized and their hydrogen-atom donating ability evaluated. The determination of the O--H bond dissociation enthalpy (BDE) of the alpha-tocopherol analogue 4 by the electron paramagnetic resonance (EPR) equilibration technique provided a value of 78.9 kcal mol(-1), that is, approximately 1.8 kcal mol(-1) higher than that of alpha-tocopherol. The kinetic rate constants for the reaction with peroxyl radicals (kinh), measured by inhibited autoxidation studies, showed that thiachromanols react 2.5 times slower than the corresponding tocopherols, in agreement with the higher BDE value. This behavior was explained, on the basis of crystallographic analyses and DFT calculations, in terms of a change in the molecular geometry caused by insertion of a sulfur atom into the framework of vitamin E. This behavior implies a greater deviation of the condensed ring from coplanarity with the aromatic ring, thus giving rise to a decrease in the conjugative stabilization of the phenoxyl radical and consequently to an increase in the O--H bond strength. Although less reactive than tocopherols, thiachromanols may, however, act as bimodal antioxidants as a result of the hydroperoxide decomposing ability of the sulfur atom.  相似文献   

12.
Computational studies on the cyclization reactions of some polycyclic aromatic hydrocarbons (PAHs) were performed at the DFT level. Compounds C26H14 and C24H14, which show the connectivity of C60 fullerene fragments, were chosen as suitable models to study the formation of curved derivatives by six- or five-membered ring formation, upon oxidation to their radical cations. Four possible pathways for the cyclization process were considered: a) initial C-C bond formation to afford a curved derivative, followed by dehydrogenation; b) homolytic C-H cleavage prior to cyclization; c) initial concerted H2 elimination and subsequent cyclization; and d) deprotonation of the radical cations prior to cyclization. Computed reaction and activation energies for these reactions show that direct cyclization from radical cations (pathway a) is the lowest-energy mechanism. The formation of five-membered rings is somewhat more favourable than benzannulation. After new cycle formation, homolytic C-H dissociation to afford the corresponding cations is the most favourable process. These cations react with H* without barrier to give H2* Intermediate deprotonations are strongly disfavoured. The relatively low activation energies compared with carbon cage rearrangements suggest that ionization of PAHs can be used for the tailored preparation of nonplanar derivatives from suitable precursors.  相似文献   

13.
[structure: see text] Chromanol-type compounds act as antioxidants in biological systems by reduction of oxygen-centered radicals. Their efficiency is determined by the reaction rate constants for the primary antioxidative reaction as well as for disproportionation and recycling reactions of the antioxidant-derived radicals. We studied the reaction kinetics of three novel chromanols: cis- and trans-oxachromanol and the dimeric twin-chromanol, as well as ubichromanol and ubichromenol, in comparison to alpha-tocopherol and pentamethylchromanol. The antioxidant-derived radicals were identified by optical and electron spin resonance spectroscopy (ESR). The kinetics of the primary antioxidative reaction and the disproportionation of the chromanoxyl radicals were assessed by stopped-flow photometry in different organic solvents to simulate the different polarities associated with biomembranes. Furthermore, the reduction of the chromanoxyl radicals by ubiquinol and ascorbate was measured after laser-induced one-electron chromanol oxidation in ethanol and in a micellar system, respectively. The rate constants showed that twin-chromanol had better radical scavenging properties than alpha-tocopherol and a significantly slower disproportionation rate of its corresponding chromanoxyl radical. In addition, the radical derived from twin-chromanol is reduced by ubiquinol and ascorbate at a faster rate than the tocopheroxyl radical. Finally, twin-chromanol can deliver twice as many reducing equivalents, which makes this compound a promising new candidate as artificial antioxidant in biological systems.  相似文献   

14.
The ion/molecule reaction of the radical cations of three isomeric bromobutenes (2-bromobut-2-ene 1, 1-bromobut-2-ene 2, 4-bromobut-1-ene 3) with ammonia were studied by Fourier transform ion cyclotron resonance spectrometry to reveal the effect of a different position of the bromo substituent relative to the C-C double bond. Further, the reaction pathways of the ion/molecule reactions were analyzed by theoretical calculations at the level B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d). All three bromobutene radical cations 1(.+) to 3(.+) react efficiently with NH(3). The reactions of 1(.+) carrying the halogen substituent at the double bond follow the pattern observed earlier for other ionized vinylic halogenoalkenes. The major reaction corresponds to proton transfer to NH(3) as to be expected from the high acidity of but-2-ene radical cations exposing six acidic H atoms at allylic positions. The other, still important, reaction of 1(.+) is substitution of the Br substituent by NH(3). Although the radical cations 2(.+) and 3(.+) are expected to be as acidic as 1(.+), proton transfer is the minor reaction pathway of these radical cations. Instead, 2(.+) displays bomo substitution as the major reaction. It is suggested that the mechanism of this reaction is analogous to S(N)2' of nucleophilic allylic substitution. Substitution of Br is not efficient for the reactions of 3(.+)-the two major reactions correspond to C-C bond cleavage of the two possible beta-distonic ammonium ions which are generated by the addition of NH(3) to the ionized double bond of 3. This observation, as well as the results obtained for 1(.+) and 2(.+), emphasize the role of the fast and very exothermic addition of a nucleophile to the ionized double bond for the ion/molecule reactions of alkene radical cations. Clearly the energetically-excited distonic ion arising from the addition fragments unimolecularly by energetically accessible pathways. In the case of a halogene subsituent (except F) at the vinylic or allylic position, this is loss of thesubsituent. In the case of remote halogeno substituents, this is C-C bond cleavage adjacent to the radical site of the distonic ion.  相似文献   

15.
A CoII/porphyrinate‐based macrocycle in the presence of a 3,5‐diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half‐threads, by radical‐carbene‐transfer reactions, in excellent 95 % yield. The method reported herein applies the active‐metal‐template strategy to include radical‐type activation of ligands by the metal‐template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self‐assembly reaction shows that the CoII/porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half‐thread derivative, promotes a novel intercomponent C?H insertion reaction to yield a new rotaxane‐like species. This unexpected intercomponent C?H insertion illustrates the distinct reactivity brought to the CoII/porphyrinate catalyst by the mechanical bond.  相似文献   

16.
Important aspects of the electrochemical reduction of a series of substituted arene sulfonyl chlorides are investigated. An interesting autocatalytic mechanism is encountered where the starting material is reduced both at the electrode and through homogeneous electron transfer from the resulting sulfinate anion. This is due to the homogenous electron transfer from the two-electron reduction produced anion (arene sulfinate) to the parent arene sulfonyl chloride. As a result, the reduction process and hence the generated final products depend on both the concentration of the substrate and the scan rate. A change is also observed in the reductive cleavage mechanism as a function of the substituent on the phenyl ring of the arene sulfonyl chloride. With 4-cyano and 4-nitrophenyl sulfonyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With other substituents (MeO, Me, H, Cl, and F) a "classical" dissociative ET is followed, where the ET and bond cleavage are simultaneous. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with gas phase chemical quantum calculations results helped us to rationalize both the observed change in the ET mechanism and the occurrence of the "sticky" dissociative ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in the gas phase. The study also shows that despite the low magnitude of in-cage interactions in acetonitrile compared to the gas phase their existence strongly affects the dynamics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents. The occurrence of an autocatalytic process and the existence of the radical/anion interaction may explain the differences previously observed in the reduction of these compounds in different media.  相似文献   

17.
The catalytic enantioselective Reformatsky reaction with ortho-substituted diarylketones with good enantioselectivities and moderate to good yields is reported. A readily available BINOL derivative is used as a chiral catalyst, and the reactions are performed with ethyl iodoacetate as a nucleophile and Me2Zn as the zinc source. The presence of air was found to be crucial to achieve an effective C-C bond formation pointing to a radical mechanism.  相似文献   

18.
A series of 2,3-dihydrobenzo[b]selenophene-5-ol antioxidants was prepared by subjecting suitably substituted allyl 4-methoxyphenyl selenides to microwave-induced seleno-Claisen rearrangement/intramolecular Markovnikov hydroselenation followed by boron tribromide-induced O-demethylation. The novel antioxidants were assayed for their capacity to inhibit azo-initiated peroxidation of linoleic acid in a water/chlorobenzene two-phase system containing N-acetylcysteine as a thiol reducing agent in the aqueous phase. Antioxidant efficiency as determined by the inhibited rate of peroxidation, Rinh, increased with increasing methyl substitution (Rinh=46-26 microM/h), but none of the compounds could match alpha-tocopherol (Rinh=22 microM/h). Regenerability as determined by the inhibition time, Tinh, in the presence of the thiol regenerating agent decreased with increasing methyl substitution. Thus, under conditions where the unsubstituted compound 5a inhibited peroxidation for more than 320 min, alpha-tocopherol worked for 90 min and the trimethylated antioxidant 5g for 60 min only. Sampling of the aqueous phase at intervals during peroxidation using antioxidant 5a showed that N-acetylcysteine was continuously oxidized with time to the corresponding disulfide. In the absence of the regenerating agent, compounds 5 inhibited peroxidation for 50-60 min only. A (RO)B3LYP/LANL2DZdp//B3LYP/LANL2DZ model was used for the calculation of homolytic O-H bond dissociation enthalpies (BDE) and adiabatic ionization potentials (IP) of phenolic antioxidants 5. Both BDE (80.6-76.3 kcal/mol) and IP (163.2-156.0 kcal/mol) decrease with increasing methyl substitution. The phenoxyl radical corresponding to phenol 5g gave an intense ESR signal centered at g=2.0099. The H-O bond dissociation enthalpy of the phenol was determined by a radical equilibration method using BHA as an equilibration partner. The observed BDE (77.6+/-0.5 kcal/mol) is in reasonable agreement with calculations (76.3 kcal/mol). As judged by calculated log P values, the lipophilicity of compounds 5 increased slightly when methyl groups were introduced into the phenolic moiety (2.9>C log P<4.2). The capacity of compounds 5a (kinh=3.8x10(5) M-1 s-1) and 5g (kinh=1.5x10(6) M-1 s-1) to inhibit azo-initiated autoxidation of styrene in the homogeneous phase (chlorobenzene) was also studied. More efficient regeneration at the lipid-aqueous interphase is the most likely explanation why the intrinsically poorest antioxidant 5a can outperform its analogues as well as alpha-TOC in the two-phase system. Possible mechanisms of regeneration are discussed and evaluated.  相似文献   

19.
The mechanism of oxidation of ascorbic acid in mouse skin homogenates by UV light was investigated by measuring ascorbate free radical formation using electron spin resonance signal formation. Addition of vitamin E (α-tocopherol or α-tocotrienol) had no effect, whereas short-chain homologues (2,5,7,8-tetramethyl-6-hydroxy-chroman-2-carboxylic acid [Trolox] and 2,2,5,7,8-penta-methyl-6-hydroxychromane [PMC]) accelerated ascorbate oxidation. The similar hydrophilicity of ascorbate, Trolox and PMC increased their interaction, thus rapidly depleting ascorbate. When dihydrolipoic acid was added simultaneously with the vitamin E homologues, the accelerated ascorbate oxidation was prevented. This was due to the regeneration of ascorbate and PMC from their free radicals by a recycling mechanism between ascorbate, vitamin E homologues and dihydrolipoic acid. Potentiation of antioxidant recycling may be protective against UV irradiation-induced damage. The rate of ascorbate oxidation in the presence of vitamin E homologues was enhanced by a photosensitizer (riboflavin) but was not influenced by reactive oxygen radical quenchers, superoxide dismutase or 5,5-dimethyl-l-pyrroline-iV-ox-ide. These experimental results suggest that the UV irradiation-induced ascorbate oxidation in murine skin homogenates is caused by photoactivated reactions rather than reactive oxygen radical reactions.  相似文献   

20.
The chemical properties of a 1,8‐didehydronaphthalene derivative, the 4,5‐didehydroisoquinolinium cation, were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. This is an interesting biradical because it has two radical sites in close proximity, yet their coupling is very weak. In fact, the biradical is calculated to have approximately degenerate singlet and triplet states. This biradical was found to exclusively undergo radical reactions, as opposed to other related biradicals with nearby radical sites. The first bond formation occurs at the radical site in the 4‐position, followed by that in the 5‐position. The proximity of the radical sites leads to reactions that have not been observed for related mono‐ or biradicals. Interestingly, some ortho‐benzynes have been found to yield similar products. Since ortho‐benzynes do not react via radical mechanisms, these products must be especially favorable thermodynamically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号