首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
原位还原法制备SBA-15介孔分子筛负载纳米银颗粒   总被引:1,自引:0,他引:1  
利用一种温和的还原剂六亚甲基四胺(HMT)通过一步合成的方法制备了介孔Ag/SBA-15分子筛, 采用粉末X射线衍射(XRD)、透射电镜(TEM)和氮气吸附/脱附等手段对样品进行了表征. 样品的比表面积为525 m2/g, 平均孔径为5.4 nm. 用XPS、广角XRD和高分辨TEM等手段证实样品中的银为金属态的纳米颗粒. 研究结果表明, 以六亚甲基四胺为还原剂通过原位还原的方法能使银纳米颗粒较好地分散到介孔材料的孔道中.  相似文献   

2.
采用微波水热法,以CdCl2·H2O和Na2S2O3·5H2O为镉源和硫源,在不同的S/Cd物质的量比条件下合成了CdS微晶。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FE-SEM)、EDS、透射电子显微镜(TEM)等对样品的物相、形貌和元素组分进行了分析。结果表明:随着S/Cd物质的量比的增大,产物CdS的形貌发生规律性变化,由四面体结构逐渐转变为准球形结构;准球形结构具有分级结构,是由更小的纳米晶组装而成;光致发光性质研究结果表明,所得的CdS微晶具有较好的蓝光发射性能。  相似文献   

3.
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2 eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.首先,采用改进的Hummers方法制备了氧化石墨烯纳米片;然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构;在pH值为6时,样品为不规则球体;当pH值为8时,纳米片结构开始出现;但当p H=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当p H值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72 m^2g^-1,平均孔径为31.08nm,Sb2S3@RGO的分别为44.53 m^2g^-1和22.65 nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).  相似文献   

4.
肖桂娜  满石清 《化学学报》2010,68(13):1272-1276
利用真空热蒸发法在二氧化硅纳米粒子单层膜上沉积锌薄膜制备了帽状锌纳米结构. 采用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)和紫外-可见吸收光谱(UV-Vis)对样品的形貌、结构和光学特性进行了表征和研究. SEM照片表明所得到的复合纳米粒子为不完全包裹的帽状结构, 且其表面较粗糙. XRD分析结果显示在二氧化硅纳米粒子上沉积的锌膜呈多晶六角密堆结构. 吸收光谱研究表明, 帽状锌纳米结构在570~760 nm范围内具有明显的由纵向双极子表面等离子体共振引起的吸收峰, 且随着锌帽层厚度的增加或二氧化硅内核粒径的增大, 该吸收峰逐渐红移; 当内核粒径增大到500 nm时, 帽状锌纳米结构在412 nm附近还出现了一个四极子共振峰.  相似文献   

5.
李从举  黄丽  肖斌  冯苹 《化学学报》2010,68(6):571-575
首先合成了纳米磷酸钙(NCP),用扫描电镜(SEM)和X射线衍射(XRD)进行了表征.再利用静电纺丝法制备了PLA/NCP复合纳米纤维,对纤维进行了TEM,SEM,XRD以及单轴拉力测试的表征.TEM和XRD测试表明,NCP已成功掺杂到聚乳酸纤维中,获得的纤维为复合纤维.SEM测试表明,NCP在溶液中浓度较小时,复合纳米纤维的形貌变化不大;NCP浓度超过PLA质量的7%后,纤维表面出现粒状物;随着浓度继续增大,粒状物逐渐增多,最后很难成纤.拉伸实验结果表明,复合纤维拉伸强度先随着NCP浓度的增加而增大,但NCP浓度超过7%后拉伸强度随着浓度的增加反而减小.  相似文献   

6.
本文利用固相合成法制备W掺杂的NbSe2,且以Nb1-xWxSe2为固体润滑相,Cu为基体相,通过粉末冶金的方法制备出不同质量百分比含量的Nb1-xWxSe2/Cu基复合材料。利用XRD、SEM、TEM测试手段分析了样品中的相成分、微观形貌,采用电阻率检测仪、材料试验机和排水法测试块体样品的电阻率、硬度和密度,并用摩擦磨损试验机对其摩擦磨损性能进行评价。结果表明随着W掺杂量的增加,Nb1-xWxSe2的形貌由规则的微米六方片转变为纳米片和纳米带的混合,掺杂对电阻率影响不大。随着Nb1-xWxSe2添加量的增加,Nb1-xWxSe2/Cu基复合材料的电阻率缓慢升高,摩擦系数呈现不同规律变化。当Nb1-xWxSe2中W掺杂量x=0且其添加质量为10%时,NbSe2/Cu基复合材料体系拥有最佳摩擦磨损性能,摩擦系数为0.15,磨痕平滑且宽度较窄。当Nb1-xWxSe2中W掺杂量x=3%且Nb0.97W0.03Se2的添加质量为5%时,Nb0.97W0.03Se2/Cu基复合材料拥有最佳摩擦磨损性能,摩擦系数为0.17,磨痕更加平滑且磨痕浅。这是由于Nb0.97W0.03Se2中同时均匀存在纳米带和纳米片,它们互相缠绕在一起,在复合材料中纳米片起到润滑成膜的作用,纳米带类似于鸟巢中的草屑和树枝,起到了增强增韧的作用,促使材料的力学和摩擦学性能同时提高。  相似文献   

7.
采用改进的水热法成功合成了单分散的纯相锶铁氧体纳米片。借助DLS、XRD、FTIR、SEM、EDS和VSM等分析测试手段对SrFe_(12)O_(19)铁氧体粉体的粒度、结构、形貌和磁性能进行表征。研究结果表明,在240℃保温5 h,物质的量之比n_(Fe~(3+))/n_(Sr~(2+))(R_(F/S))和n_(OH~-)/n_(NO~-)(R_(O/N))分别为5和2时,所得产物为单分散的纯相六角SrFe_(12)O_(19)铁氧体纳米片。随着R_(F/S)和R_(O/N)的变化,合成样品中有少量SrCO_3和Fe_2O_3杂相存在,这主要与反应条件和离子比例有关。磁性能测试结果显示,所得纯相的六角SrF_(12)O_(19)铁氧体纳米片具有优异的磁性能,其饱和磁化强度和矫顽力分别达到60.91 emu·g~(-1)和94.83 kA·m~(-1),使其在医疗、催化和生物等高技术领域具有潜在的应用。  相似文献   

8.
X型六角晶系钡铁氧体纳米晶的制备和表征   总被引:15,自引:1,他引:15  
用硬脂酸凝胶法制备了Co2-X型六角晶系钡铁氧体纳米晶,在750℃热处理得到的纳米晶形貌为球形,粒径范围为15~25nm.随着热处理温度的升高,粒子逐渐长大并呈块状.振荡样品磁强计测试结果表明,Co2-X型六角晶系钡铁氧体纳米晶具有与常规体材料不同的磁性能,其比饱和磁化强度σs低于后者.产物的矫顽力、比饱和磁化强度随粒子的长大呈规律性的变化.  相似文献   

9.
采用电沉积法,在阳极氧化铝(AAO)模板中制备了[NiFe/Cu/Co/Cu]n多层纳米线.利用扫描电子显微镜(SEM)及透射电子显微镜(TEM)对纳米多层线的表面形貌及结构进行了表征,纳米线阵列高度有序、直径均一、层状结构清晰,NiFe层厚度约40 nm,Cu层厚度约60 nm,Co层厚度约15 nm,各子层厚度可控.利用X射线能谱分析仪(EDS)对纳米多层线NiFe层的成分进行了测试,Ni,Fe的原子比为4:1.利用X射线衍射仪(XRD)对[NiFe/Cu/Co/Cu]n纳米多层膜和多层线结构进行了测试,多层膜为面心立方(fcc)结构,多层线NiFe层为面心立方(fcc)结构,Cu层为六方密排hcp(100),Co层为面心立方(fcc)结构.与组成、结构完全相同的多层膜相比,[NiFe/Cu/Co/Cu]n多层纳米线具有更优越的巨磁电阻性能.  相似文献   

10.
孔状Co_3O_4纳米片和纳米棒的选择性合成和表征(英文)   总被引:1,自引:0,他引:1  
利用两步实验选择性合成孔状Co3O4纳米片和纳米棒:首先,以Co(NO3)2·6H2O,NaOH和不同量的NH4F为原料在120℃水热6h的条件下合成了Co(OH)2-Co3O4纳米片(S1)和Co(OH)F-Co3O4纳米棒(S2);然后将所得纳米片和纳米棒在400℃时加热2h即得到多孔的Co3O4纳米片和纳米棒。所得产物用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)进行了表征。此外电化学测试表明Co3O4纳米棒的电容量比Co3O4纳米片的更大。  相似文献   

11.
采用溶剂热法合成了具有不同晶粒尺寸的聚乙烯吡咯烷酮(PVP)修饰的CdS纳米晶,并运用XRD,N2物理吸附,TEM,IR,UV-Vis等手段进行表征。结果表明,所制得的样品均为聚乙烯吡咯烷酮(PVP)修饰的CdS纳米晶;添加四甲基氢氧化铵(TMAH)有利于获得晶粒尺寸较小的CdS纳米晶;受纳米晶粒尺寸的影响,CdS纳米晶的吸收边发生蓝移且可见光催化活性明显提高。  相似文献   

12.
以表面活性剂十六烷基三甲基溴化铵(CTABr)为模板剂,在水热体系对水蒸气处理后的超稳Y型(USY)沸石进行晶化处理,获得高酸量和高水热稳定性的USY-c-w样品。利用X射线衍射、扫描电子显微镜、透射电子显微镜、固态核磁共振、N2吸附-脱附、NH3-程序升温脱附、傅里叶变换红外光谱及吡啶红外对所制备催化剂的物化性质进行详细表征。选用1,3,5-三异丙苯(TIPB)催化裂化作为探针反应,研究制备的催化剂的催化性能,并与工业USY沸石进行对比。结果表明,再次水热晶化后,样品的硅铝骨架局部重构,非骨架铝重新进入沸石骨架,合成样品的硅铝比(nSiO2/nAl2O3)由10降至3.0;再晶化后的USY沸石,不仅具有丰富的介孔结构,并且具有更多的弱酸和中强酸位点。在TIPB裂解反应中,再晶化后的USY沸石表现出比原样品更优异的催化性能。  相似文献   

13.
室温下合成纺锤形貌六方相NaLnF_4(Ln=Nd,Sm,Eu,Gd,Tb)纳米颗粒   总被引:1,自引:0,他引:1  
室温下合成长250nm,宽100nm的纺锤形貌六方相的NaNdF4。NaEuF4,NaSmF4,NaGdF4和NaTbF4也用同样的方法获得。产物用XRD,TEM,HRTEM,FESEM和PL进行表征。PL光谱显示合成的NaEuF4的激发波长是394nm。NaEuF4有4个特征发射谱带,分别是591,615,650和681nm。  相似文献   

14.
Rare-earth ions (Eu3+, Tb3+) doped AMoO4 (A=Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO4 phase. It has been shown that the as-synthesized SrMoO4:Ln and BaMoO4:Ln samples show respective uniform peanut-like and oval morphologies with narrow size distribution. The possible growth process of the AMoO4:Ln has been investigated in detail. The EG/H2O volume ratio, reaction temperature and time have obvious effect on the morphologies and sizes of the as-synthesized products. Upon excitation by ultraviolet radiation, the AMoO4:Eu3+ phosphors show the characteristic 5D07F1–4 emission lines of Eu3+, while the AMoO4:Tb3+ phosphors exhibit the characteristic 5D47F3–6 emission lines of Tb3+. These phosphors exhibit potential applications in the fields of fluorescent lamps and light emitting diodes (LEDs).  相似文献   

15.
当使用液固溶法(LSS法)制备分散性纳米晶时,将传统油酸/油酸钠/酒精反应体系中的NaOH用氨水取代时,氨水将会与油酸形成新的表面活性剂油酸铵,这样就可以合成各种超细分散性的REF3纳米晶(RE代表稀土元素)。在这种新的反应体系中,合成了平均直径小于10 nm的YF3和GdF3超细颗粒,X射线与透射电镜测试表明YF3是正交相,而GdF3是面心立方结构,空间群为Fm3m,晶格常数为0.582 9 nm。在980 nm半导体激光器激发下,可检测到YF3∶Yb/Er在515~570 nm处有较强的绿色发光峰、645~675 nm处有较强的红色发光峰,呈橙色发光。YF3∶Yb/Tm和GdF3∶Yb/Tm样品在460~490 nm处有较强的蓝色发光峰,而在800 nm附近有更强的近红外发光峰。由于其超细的尺寸及红外上转换发光特性,合成的样品在生物成像、生物标签等方面有潜在的应用价值。  相似文献   

16.
当使用液固溶法(LSS法)制备分散性纳米晶时,将传统油酸/油酸钠/酒精反应体系中的NaOH用氨水取代时,氨水将会与油酸形成新的表面活性剂油酸铵,这样就可以合成各种超细分散性的REF3纳米晶(RE代表稀土元素)。在这种新的反应体系中,合成了平均直径小于10nm的YF3和GdF3超细颗粒,X射线与透射电镜测试表明YF3是正交相,而GdF3是面心立方结构,空间群为Fm3m,晶格常数为0.5829nm。在980nm半导体激光器激发下,可检测到YF3:Yb/Er在515~570nm处有较强的绿色发光峰、645~675nm处有较强的红色发光峰,呈橙色发光。YF:Yb/Tm和GdF3:Yb/Tm样品在460~490nm处有较强的蓝色发光峰,而在800nm附近有更强的近红外发光峰。由于其超细的尺寸及红外上转换发光特性,合成的样品在生物成像,生物标签等方面有潜在的应用价值。  相似文献   

17.
以钛酸丁酯和硝酸银为前驱体,采用一步火焰辅助热解法制备了Ag_2O/TiO_2光催化剂并研究了样品在紫外-可见光照射下的光催化制氢性能。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis DRS)对样品进行了表征。XRD结果表明TiO_2均为锐钛矿晶型,Ag的引入对XRD结果无明显影响。SEM图显示未修饰的TiO_2是微球形貌,随着引入Ag含量的增加,微球减少直至消失。通过XPS分析和化学沉淀法表明样品中Ag的存在形式为Ag_2O。UV-Vis DRS测试发现引入Ag后提高了样品的光吸收。前驱体中Ag的量影响样品的光催化活性,最高的光催化制氢的活性可以达到相同条件下的P25的15倍。对光催化反应后的样品进行分析,认为在光催化过程中部分Ag_2O通过光生电子转化为Ag形成Ag/TiO_2,进一步提高光催化制氢活性。  相似文献   

18.
以钛酸丁酯和硝酸银为前驱体,采用一步火焰辅助热解法制备了Ag2O/TiO2光催化剂并研究了样品在紫外-可见光照射下的光催化制氢性能。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis DRS)对样品进行了表征。XRD结果表明TiO2均为锐钛矿晶型,Ag的引入对XRD结果无明显影响。SEM图显示未修饰的TiO2是微球形貌,随着引入Ag含量的增加,微球减少直至消失。通过XPS分析和化学沉淀法表明样品中Ag的存在形式为Ag2O。UV-Vis DRS测试发现引入Ag后提高了样品的光吸收。前驱体中Ag的量影响样品的光催化活性,最高的光催化制氢的活性可以达到相同条件下的P25的15倍。对光催化反应后的样品进行分析,认为在光催化过程中部分Ag2O通过光生电子转化为Ag形成Ag/TiO2,进一步提高光催化制氢活性。  相似文献   

19.
A composite Cu/ZnO nanostructure with Cu nanoparticles supported on ZnO hexagonal nanoplates has been successfully fabricated by a heating approach, using their metal oleate salts as the precursors without any additives. Combined Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and other examination technologies, the structural properties and formation mechanism of as-synthesized Cu/ZnO nanocomposites are studied in detail. The results reveal that the nanostructures are plate-like with uniform shape and size, and Cu nanoparticles exhibit specific (111) plane matching with the (002) facet of ZnO, indicating a surface-induced interaction mechanism. Further characterization demonstrates that copper nanoparticles can be generated by a decomposition/self-reduction route of copper salts, and the oleate ions act as dual roles in the process: reducing and protecting agents. The difference of decomposition temperature between metal oleates also plays important roles in the formation of Cu/ZnO nanostructure. In addition, the catalytic performance of these nanocomposites is evaluated and it can be found that compared with Cu/rod-like ZnO, as-synthesized samples are highly selective for methanol.  相似文献   

20.
Cu-incorporated ordered hexagonal mesoporous silicates (Cu-MCM-41) with spheres-within-a-sphere hollow structure have been synthesized using thermoreversible polymer hydrogel methylcellulose (MC) and cationic surfactant as co-templates, which have been characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD), transmission electron micrograph (TEM), and N2 adsorption-desorption isotherms. The obtained results indicate that the morphology of Cu-incorporated MCM-41 materials is "spheres-within-a-sphere" hollow structure, which is very similar to that of the alveolus. In benzene hydroxylation with H2O2, the hollow spheres show much higher catalytic activity than particles of Cu-MCM-41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号