首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eu3+ ion-doped LaPO4 nanowires or nanorods have been successfully synthesized by a simple hydrothermal method. The influence of varying the hydrothermal and subsequent sintering conditions on the morphology and structure of the LaPO4 host has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). For comparison, the Eu3+ ions were also doped into monoclinic monazite LaPO4 nanoparticles and perovskite LaAlO3 nanoparticles. The relative intensities of the emission lines of the LaPO4:Eu3+ nanosystems were essentially independent of their shape. The optimal doping concentrations in the monoclinic LaPO4 and perovskite LaAlO3 nanosystems were determined to be about 5.0 and 3.5 mol%, respectively. Under appropriate UV-radiation, the red light emitted from LaAlO3:Eu3+ (3.5 mol%) was brighter than that from LaPO4:Eu3+ (5.0 mol%) nanomaterial, resulting from differences in their spin-orbit couplings and covalence, which indicates that the nanoscale LaAlO3 is a promising host material for rare earth ions. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Supported by the National Natural Science Foundation of China (Grant Nos. 20873039 & 90606001), Hunan Provincial Natural Science Foundation (No. 07jj4002), and the Students Innovation Training Fund of Hunan University  相似文献   

2.
CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were synthesized by a sol–gel method under mild conditions (i.e. low temperature and ambient pressure). The as-prepared powders were characterized by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of nitrogen monoxide gas. It suggested that CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were composed of anatase titania and that CaAl2O4:Eu2+, Nd3+. TiO2 particles were deposited on the surface of CaAl2O4:Eu2+, Nd3+ to form uniform film. CaAl2O4:Eu2+, Nd3+@TiO2 composite powders exhibited higher photocatalytic activity compared with pure TiO2 under visible light. And the result also clearly indicated that the long afterglow phosphor absorbed and stored lights for the TiO2 to remain photocatalytic activity in the dark.  相似文献   

3.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

4.
The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr2MgSi2O7:Eu2+,R3+ materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr2MgSi2O7:Eu2+,R3+ material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 °C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr2MgSi2O7:Eu2+,R3+ materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R3+ co-dopants.  相似文献   

5.
Eu2+/Dy3+-codoped BaAl2O4 phosphors were prepared by conventional solid-state reaction with boric acid flux. The effects of boric acid on structural and luminescent properties of BaAl2O4:(Eu2+, Dy3+) were investigated. The crystallinity of BaAl2O4 improved with increasing amount of H3BO3. Incorporation of Eu2+ and Dy3+ ions into effective lattice sites was promoted by H3BO3 addition. As a result, Eu2+ emission in BaAl2O4 was greatly enhanced by H3BO3, and the duration of persistent luminescence increased with the amount of H3BO3. However, the decay lifetime of persistent luminescence was not strongly influenced by the amount of H3BO3.  相似文献   

6.
The Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) techniques. The luminescence properties were investigated using thermoluminescence (TL), photoluminescence (PL), long afterglow, mechanoluminescence (ML), and ML spectra techniques. The crystal structure of sintered phosphors was an akermanite type structure, which belongs to the tetragonal crystallography. TL properties of these phosphors were investigated, and the results were also compared. Under the ultraviolet excitation, the emission spectra of both prepared phosphors were composed of a broad band peaking at 535 nm, belonging to the broad emission band. When the Ca2MgSi2O7:Eu2+ phosphor is co-doped with Dy3+, the PL, afterglow and ML intensity is strongly enhanced. The decay graph indicates that both the sintered phosphors contain fast decay and slow decay process. The ML intensities of Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ phosphors were proportionally increased with the increase of impact velocity, which suggests that this phosphor can be used as sensors to detect the stress of an object.  相似文献   

7.
Fine Eu3+-doped lutetium oxide (Lu2O3:Eu3+) nanophosphor were synthesized using a low-temperature solution-combustion method in a methyl-alcohol solution. The characteristics of the nanophosphors synthesized at various sintering temperatures with different Eu3+ concentrations were analyzed to determine the optimum synthesis conditions. Thermogravimetry/differential thermal analysis showed that Lu2O3:Eu3+ crystallizes completely when the dry powder is sintered at 500 °C. The Lu2O3:Eu3+ crystals had a cubic structure and monoclinic phase. The peak position of the luminescence spectrum did not differ with the concentration of Eu or the sintering temperature or atmosphere, whereas the luminescence intensity was strongly dependent on the concentration and sintering conditions.  相似文献   

8.
The flower-like phosphors of Sr2MgSi2O7: Eu2+, Dy3+ with high brightness and long afterglow were obtained by sol–gel method. X-ray diffraction pattern (XRD) shows that single-phased Sr2MgSi2O7 phosphor is prepared by sol–gel method under 1250 °C. Scanning electron microscope (SEM) indicates that the phosphor consists of nano-sized whiskers which are detected for the first time in Eu2+ and Dy3+ co-doped long-lasting phosphorescence silicates. Furthermore, the investigation on the mechanism indicates that the internal structure and gas, liquid and solid phase effect play important roles in the formation of flower-like Sr2MgSi2O7: Eu2+, Dy3+ nanostructure. Finally, the optical properties of flower-like Sr2MgSi2O7 nanostructure have been characterized by photoluminescence (PL) spectra.  相似文献   

9.
Complexation behavior of NpO2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO4) at pcH 3.68±0.08 and 25 °C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β1) for the 1:1 complex, NpO2(OSi(OH)3), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I=0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am3+, Eu3+, UO2 2+, PuO2 2+, Np4+, Ni2+ and Co2+. The speciation of NpO2 +-o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.  相似文献   

10.
Non-aggregated spherical polystyrene (PS) particles were coated with GdPO4:Tb3+/Ce3+ phosphor layers by a conventional hydrothermal synthesis using poly(vinylpyrrolidone) (PVP) as an additive without further annealing treatment. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), as well as luminescence decay experiments were used to characterise the resulting core-shell structured PS@GdPO4:Tb3+/Ce3+ samples. The results of XRD indicated that the PS particles were successfully coated with the GdPO4:Tb3+/Ce3+ phosphor layers, which could be further verified by the images of FESEM. Under ultraviolet excitation, the PS@GdPO4:Tb3+/Ce3+ phosphors show Tb3+ characteristic emission, i.e. 5D4-7FJ (J = {6, 5, 4, 3}) emission lines with green emission 5D4-7F5 (543 nm) as the most prominent group. The core-shell phosphors so obtained have potential applications in field emission display (FED) and plasma display panels (PDP).  相似文献   

11.
Eu, Dy co-doped strontium aluminate nanophosphors were prepared by the combustion synthesis method. Their structure and morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. According to the XRD and the TEM analysis, the average crystallite size was found to be in the nanometer range. The phase structure of the prepared nanophosphor is consistent with a standard monoclinic phase with a space group P21. The prepared SrAl2O4:Eu2+, Dy3+ nanophosphor emitted green light with a peak at 510 nm showing blue shift, which is due to the reduction in the particle size. Two distinct peaks were observed in the ML intensity versus time curve. The two peaks in ML indicate the presence of charge transfer in an ML process.  相似文献   

12.
High quality GdTaO4:Eu3+ luminescence films have been successfully prepared through a modified sol-gel process. The films were prepared using inorganic materials as raw materials, and the thermal decomposition and UV assisted technique were introduced to improve the quality of the film and reduce the period for forming the thick film. Results of structural studies by atomic force microscopy (AFM) and X-ray diffraction (XRD) showed that the surface was smooth and the structure was monoclinic with the average grain size of about 55 nm. The emission and excitation spectra of the film were investigated. Related to the transition 5 D07 F1 and 5 D07 F2 of Eu3+ ions, the main luminescence peaks were observed at 591 and 611 nm respectively, and the luminescence peak at 345 nm was detected simultaneously related to the TaO43− emission. Transmission spectrum and decay curve of the luminescence are also presented in this paper.  相似文献   

13.
The photoluminescence properties of xZnO–(100−x)SiO2 (x = 0, 5, 10, 20) containing 1% Eu2O3 prepared by a sol–gel method were systematically investigated. The results indicated that the relative proportion of f–f transitions to charge transfer (CT) absorption decreased with the increase of ZnO concentration. The intensity of 5D07FJ transitions of Eu3+ ions was enhanced with the increase of ZnO content due to local structure changes and decreased quantities of Eu3+ ions clusters. The results of fluorescence line narrow (FLN) spectra indicated that Eu3+ ions occupied one site in SiO2 glass and two sites in ZnO–SiO2 glasses. The second-order crystal field parameters were calculated. B20 and B22 for site 1 increased with excitation energy, while ones hardly changed for site 2.  相似文献   

14.
Zinc gallate (ZnGa2O4) nanopowders doped with Cr3+ (1?mo%) were synthesized by the citric acid assisted sol–gel method. The influence of annealing temperature, structural, morphological, and optical properties of ZnGa2O4: Cr3+ (1?mol%) nanosized particles were investigated. The X-ray diffraction (XRD) spectra indicated that the nanoparticles are cubic in structure and the annealing temperature did not influence any c in structure. The average crystallite size of ZnGa2O4: Cr3+ nanoparticles were observed to increase from 11.85 to 30.88?nm as the annealing temperature increased from 600 to 1000?°C. The scanning electron microscopy (SEM) showed nearly spherical nanostructures that change in size with annealing temperature. The high resolution transmission electron microscope (HR-TEM) images show well resolved lattice fringes which is an indications of highly crystalline samples. Ultraviolet–visible (UV–Vis) measurement show decrease in reflectance in visible region and energy band gap was found to decrease with annealing temperature. The photoluminescence (PL) intensity was found to be maximum for sample annealed at high temperature (1000?°C) and least with sample annealed at low temperature (600?°C). An increase in annealing temperature leads significantly increment in PL intensity. The degree of crystallinity also increased with annealing temperature from XRD, SEM, and HR-TEM analysis. The photoluminescence lifetimes, particle size, and emission spectra are comparable with reports on bioimaging applications.  相似文献   

15.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

16.
This study examined the applications of novel non-polymer magnetic ferrite nanoparticles (Fe3O4 NPs) labeled with 99mTc-pertechnetate (99mTcO4 ). The radiochemistry, chemistry, and biodistribution of Fe3O4 NPs labeled with 9mTcO4 were analyzed. This paper employed instant thin layer chromatography and magnetic adsorption to evaluate the labeling efficiency and stability of 99mTc-Fe3O4 at various reaction conditions. A scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, laser particle size analyzer, and superconducting quantum interference device magnetometer were used to analyze the physical and chemical properties of the Fe3O4 and 99Tc-Fe3O4 nanoparticles. The biodistribution and excretion of 99mTc-Fe3O4 were also investigated. Radiochemical analyses showed that the labeling efficiency was over 92% after 1 min in the presence of a reducing agent. Hydroxyl and amine groups covered the surface of the Fe3O4 particles. Therefore, 99Tc (VII) reduced to lower oxidation states and might bind to Fe3O4 NPs. The sizes of the 99Tc-Fe3O4 NPs were about 600 nm without ultrasound vibrations, and the particle sizes were reduced to 250 nm under ultrasound vibration conditions. Nonetheless, Fe3O4 NPs and 99Tc-Fe3O4 NPs exhibited superparamagnetic properties, and the saturation magnetization values were about 55 and 47 emu/g, respectively. The biodistribution showed that a portion of the 99mTc-Fe3O4 nanoparticles might embolize in a pulmonary capillary initially; the embolism radioactivity was cleared from the lungs and was then taken up by the liver. 99mTc-Fe3O4 metabolized very slowly only 1–2% of the injected dose (ID) was excreted in urine and about 2.37% ID/g was retained in the liver 4 h after injection. Radiopharmaceutically, 99mTc-Fe3O4 NPs displayed long-term retention, and only 99mTc-Fe3O4 NPs that dissociated to free pertechnetate could be excreted in urine. This research evaluated the feasibility of non-polymer magnetic ferrite NPs labeled with technetium as potential radiopharmaceuticals in nuclear medicine.  相似文献   

17.
The kinetics of the formation of a new phase at the interface between the LaF3:Eu2+ single crystal and the (Sn, Bi, or Sb) metallic electrodes was studied using potentiostatic transient measurements and voltammetry with a linear variation of voltage. A comparison of the theoretical and experimental reduced transients that define two-dimensional instantaneous nucleation on a plot of I/I m vs. t/t m and three-dimensional growth of the instantaneous and progressive types of nucleation on a plot of I 2/I m2 vs. t/t m showed that the model was not fully consistent with the experiment. The dependence of the stationary current logI A(max) of the potentiostatic transients on 1/η during the formation of the intermediate phase on the boundaries of LaF3:Eu2+|Sn and LaF3:Eu2+|Bi was found to be linear, which corresponds to two-dimensional nucleation and growth of the new phase.  相似文献   

18.
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)3(H2O)2] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)3(H2O)2] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the 5D0 → 7FJ transitions (J = 4−0) of Eu3+ ion indicate the incorporation of the Eu3+ ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.  相似文献   

19.
A ternary salt system Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 was studied in the subsolidus area by X-ray phase analysis. A novel ternary molybdate, Rb4.98Eu0.86Hf1.11(MoO4)6, formed in the system. The Rb4.98Eu0.86Hf1.11(MoO4)6 rubidium-europium-hafnium molybdate crystals were grown by solution-melt crystallization under the spontaneous nucleation conditions. The structure and composition of this compound were refined by single crystal X-ray diffraction (X8 APEX automated diffractometer, MoK α radiation, 1753 F(hkl), R = 0.0183). The crystals are trigonal, a = b = 10.7264(1) Å, c = 38.6130(8) Å, V = 3847.44(9) Å3, Z = 6, space group R \(\bar 3\) c. The three-dimensional mixed framework of the structure comprises Mo tetrahedra and two types of octahedra, (Eu,Hf)O6 and HfO6. The large cavities of the framework include two types of the rubidium atom. The distribution of the Eu3+ and Hf4+ cations over two crystallographic positions was refined.  相似文献   

20.
Nanobiotechnology has opened a new and exciting opportunities for exploring urea biosensor based on magnetic nanoparticles (NPs) mainly Fe3O4 and Co3O4. These NPs have been extensively exploited to develop biosensors with stability, selectivity, reproducibility and fast response time. This review gives an overview of the development of urea biosensor based on Fe3O4 and Co3O4 for in vitro diagnostic applications along with significant improvements over the last few decades. Additionally, effort has been made to elaborate properties of magnetic nanoparticles (MNPs) in biosensing aspects. It also gives details of recent developments in hybrid nanobiocomposite based urea biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号