首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bedair M  El Rassi Z 《Electrophoresis》2002,23(17):2938-2948
A novel monolithic stationary phase having long alkyl chain ligands (C17) was introduced and evaluated in capillary electrochromatography (CEC) of small neutral and charged species. The monolithic stationary phase was prepared by the in situ copolymerization of pentaerythritol diacrylate monostearate (PEDAS) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a ternary porogenic solvent consisting of cyclohexanol/ethylene-glycol/water. While AMPS was meant to support the electroosmotic flow (EOF) necessary for transporting the mobile phase through the monolithic capillary, the PEDAS was introduced to provide the nonpolar sites for chromatographic retention. Monolithic columns at various EOF velocities were readily prepared by conveniently adjusting the amount of AMPS in the polymerization solution as well as the composition of the porogenic solvent. The monolithic stationary phases thus obtained exhibited reversed-phase chromatography behavior toward neutral solutes and yielded a relatively strong EOF. For charged solutes (e.g., dansyl amino acids), nonpolar as well as electrostatic interaction/repulsion with the monoliths were observed in addition to electrophoretic migration. Therefore, for charged solutes, selectivity and migration can be readily manipulated by changing various parameters including the nature of the monolith and the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). Ultrafast separation on the time scale of seconds of 17 different charged and neutral pesticides and metabolites were performed using short capillary columns of 8.5 cm x 100 microm ID.  相似文献   

2.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

3.
A neutral octadecyl monolithic (ODM) column for RP capillary electrochromatography (RP-CEC) has been developed. The ODM column was prepared by the in situ polymerization of octadecyl acrylate (ODA) as the monomer and trimethylolpropanetrimethacrylate (TRIM) as the crosslinker, in a ternary porogenic solvent containing cyclohexanol, ethylene glycol, and water. The ODM column exhibited cathodal EOF over a wide range of pH and ACN concentration in the mobile phase despite the fact that it was devoid of any fixed charges. It is believed that the EOF is due to the adsorption of ions from the mobile phase onto the surface of the monolith thus imparting to the neutral ODM column the zeta potential necessary to support the EOF required for mass transport across the monolithic column. Furthermore, the adsorption of mobile phase ions to the neutral monolith modulated solute retention and affected the separation selectivity. The wide applications of the neutral ODM column were demonstrated by its ability to separate a wide range of small and large solutes, both neutral and charged. While the separation of the neutral solutes was based on RP retention mechanism, the charged solutes were separated on the basis of their electrophoretic mobility and hydrophobic interaction with the C18 ligands of the stationary phase. As a typical result, the neutral monolithic column was able to separate peptides quite rapidly with a separation efficiency of nearly 200,000 plates/m, and this efficiency was exploited in tryptic peptide mapping of standard proteins, e. g., lysozyme and cytochrome C, by isocratic elution.  相似文献   

4.
5.
Karenga S  El Rassi Z 《Electrophoresis》2010,31(19):3192-3199
A neutral hydroxylated octadecyl monolith (ODM-OH) for reversed-phase capillary electrochromatography has been developed. The ODM-OH was prepared by the in situ polymerization of octadecyl acrylate and pentaerythritol triacrylate (PETA) in a ternary porogenic solvent. Pentaerythritol triacrylate possesses a hydroxyl functional group, which imparts the monolith with a hydrophilic group, thus the acronym ODM-OH. The ODM-OH column exhibited cathodal EOF over a wide range of pH and ACN concentration in the mobile phase despite the fact that it was devoid of any fixed charges. This ODM-OH monolith exhibited stronger EOF than its counterpart the ODM made from the in situ polymerization of octadecyl acrylate and trimethylolpropane trimethacrylate. Similar to ODM, it is believed that the EOF was due to the adsorption of ions from the mobile phase onto the surface of the monolith thus imparting the neutral monolithic column the zeta potential necessary to support the EOF. The higher EOF exhibited by ODM-OH was due to the presence of polar OH groups on its surface, which would favor stronger adsorption of ions from the mobile phase. The wide applications of the neutral ODM-OH column were demonstrated in the separation of a wide range of small and large solutes. As a typical result, the ODM-OH was able to separate proteins quite rapidly yielding 200,000 plates/m.  相似文献   

6.
Karenga S  El Rassi Z 《Electrophoresis》2011,32(9):1033-1043
Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith.  相似文献   

7.
A carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C18) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide. The bonding of octadecyl ligands was achieved via an amide linkage between the carboxy functions of the precursor monolith and the amino group of the octadecylamine compound. The resulting C18 monolith exhibited a very low electroosmotic flow (EOF), a fact that required the incorporation of small amounts of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the polymerization solution to produce a precursor monolith with fixed negative charges of sulfonate groups. This may indicate that the conjugation of the carboxy functions with octadecylamine occurred to a large extent so that the amount of residual carboxy functions was sparsely dispersed and not enough to produce a desirable EOF. The EOF velocity of the C18 column having fixed negative charges provided by the incorporated AMPS increased with increasing ACN content of the mobile phase signaling an increased binding of mobile phase ions to the polar amide linkages near the monolithic surface, and a decreased viscosity of the mobile phase, both of which would result in increased EOF velocity. The C18 monolithic column constituted a novel nonpolar sorbent for reversed-phase capillary electrochromatography for nonpolar solutes, e.g., alkylbenzenes, alkylphenyl ketones, and polyaromatic hydrocarbons, and slightly polar compounds including phenol and chlorophenols. The C18 monolithic column exhibited relatively high selectivity toward chlorophenols differing by one chloro substituent.  相似文献   

8.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

9.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

10.
A silica-based monolithic stationary phase with mixed-mode of reversed phase (RP) and weak anion-exchange (WAX) for capillary electrochromatography (CEC) has been prepared. The mixed-mode monolithic silica column was prepared using the sol–gel technique and followed by a post-modification with hexadecyltrimethoxysilane (HDTMS) and aminopropyltrimethoxysilane (APTMS). The amino groups on the surface of the stationary phase were used to generate a substantial anodic EOF as well as to provide electrostatic interaction sites for charged compounds at low pH. A cathodic EOF was observed at pH above 7.3 due to the full ionization of residual silanol groups and the suppression in the ionization of amino groups. A variety of analytes were used to evaluate the electrochromatographic characterization and column performance. The monolithic stationary phase exhibited RP chromatographic behavior toward neutral solutes. The model anionic solutes were separated by the mixed-mode mechanism, which comprised RP interaction, WAX, and electrophoresis. Symmetrical peaks can be obtained for basic solutes because positively charged amino groups can effectively minimize the adsorption of positively charged analytes to the stationary phase.  相似文献   

11.
A novel silica monolithic stationary phase functionalized with 3-(2-aminoethylamino)propyl ligands for pressurized CEC has been presented. The monolithic capillary columns were prepared by a sol-gel process in 75 microm id fused-silica capillaries and followed by a chemical modification. The diamino groups on the surface of the stationary phase are meant to generate the chromatographic surface and a substantial anodic EOF as well as to provide electrostatic interaction sites for charged solutes. The electrochromatographic characterization and column performance were evaluated by a variety of neutral and charged solutes. It was observed that the anodic EOF for the diamine-bonded monolith was greatly affected by the reaction time with 3-(2-aminoethylamino)propyltrimethoxysilane and the PEG amount in the sol-gel reaction mixture in addition to the mobile phase conditions. The monolithic stationary phase exhibited hydrophilic interaction chromatographic behavior toward neutral solutes. Good separations of various solutes including phenols, nucleic acid bases, nucleosides and nucleotides were achieved under different experimental conditions. Fast and efficient separations were obtained with high plate counts reaching more than 130,000 plates/m.  相似文献   

12.
Karenga S  El Rassi Z 《Electrophoresis》2010,31(19):3200-3206
A neutral naphthyl methacrylate-phenylene diacrylate-based monolith (NPM) was introduced for RP-CEC of various neutral and charged solute probes via hydrophobic and π interactions. The NPM column was prepared by the in situ polymerization of naphthyl methacrylate as the functional monomer and 1,4-phenylene diacrylate (PDA) as the crosslinker in a ternary porogenic solvent containing cyclohexanol, dodecanol and water. The NPM column exhibited cathodal EOF despite the fact that it was devoid of any fixed charges. NPM exhibited stronger EOF than its counterpart naphthyl methacrylate monolith (NMM) made from the in situ polymerization of naphthyl methacrylate and trimethylolpropane trimethacrylate (TRIM). As for NMM, it is believed that the EOF arises from the adsorption of mobile phase ions onto the monolith surface. The higher EOF exhibited by NPM may be attributed to the acrylate nature of PDA as compared to the methacrylate nature of TRIM, and therefore PDA has a higher binding capacity for mobile phase ions due to its higher polarity than TRIM. The adsorption of mobile phase ions together with the additional π interactions offered by the aromatic rings of the NPM matrix modulated solute retention and separation selectivity. The applications of NPM were demonstrated by the separation of a wide range of small and large solutes including peptides, tryptic peptide maps and proteins.  相似文献   

13.
Lü H  Wang J  Wang X  Wu X  Lin X  Xie Z 《Journal of separation science》2007,30(17):2993-2999
A monolithic stationary phase was prepared in a single step by in situ copolymerization of iso-butyl methacrylate (IBMA), ethylene dimethacrylate (EDMA), and N,N-dimethylallylamine (DMAA) in a binary porogenic solvent consisting of N,N-dimethylformamide (DMF) and 1,4-butanediol. As the frame structures of monoliths, the amino groups are linked to support the EOF necessary for driving the mobile phase through the monolithic capillary, while the hydrophobic groups are introduced to provide the nonpolar sites for the chromatographic retention. To evaluate the column performance, separations of typical kinds of neutral or charged homologs, such as alkylbenzenes, phenols (including isomeric compounds of hydroquinone, resorcin, and catechol), and anilines (including isomeric compounds of o-phenylenediamine and 1,4-phenylenediamine), were performed, respectively on the prepared column under the mode of pressurized pCEC. Effects of the buffer pH and the mobile phase composition on the linear velocity of mobile phase and the retention factors of these compounds were investigated. It was found that the retention mechanism of charged solutes could be attributed to a mixed mode of hydrophobic interaction and electrophoresis, while an RP chromatographic behavior on the monolithic stationary phases was exhibited for neutral solutes. Especially, basic compounds such as anilines were well separated on the monolithic columns in the "counterdirectional mode," which effectively eliminated the electrostatic adsorption of basic analytes on the charged surface of the stationary phases.  相似文献   

14.
Wu R  Zou H  Ye M  Lei Z  Ni J 《Electrophoresis》2001,22(3):544-551
A mode of capillary electrochromatography (CEC), based on the dynamical adsorption of surfactants on the uncharged monolithic stationary phases has been developed. The monolithic stationary phase, obtained by the in situ polymerization of butyl methacrylate with ethylene dimethacrylate, was dynamically modified with an ionic surfactant such as the long-chain quaternary ammonium salt of cetyltrimethylammonium bromide (CTAB) and long-chain sodium sulfate of sodium dodecyl sulfate (SDS). The ionic surfactant was adsorbed on the surface of polymeric monolith by hydrophobic interaction, and the ionic groups used to generate the electroosmotic flow (EOF). The electroosmotic mobility through these capillary columns increased with increasing the content of ionic surfactants in the mobile phase. In this way, the synthesis of the monolithic stationary phase with binary monomers can be controlled more easily than that with ternary monomers, one of which should be an ionic monomer to generate EOF. Furthermore, it is more convenient to change the direction and magnitude of EOF by changing the concentration of cationic or anionic surfactants in this system. An efficiency of monolithic capillary columns with more than 140000 plates per meter for neutral compounds has been obtained, and the relative standard deviations observed for to and retention factors of neutral solutes were about 0.22% and less than 0.56% for ten consecutive runs, respectively. Effects of mobile phase composition on the EOF of the column and the retention values of the neutral solutes were investigated. Simultaneous separation of basic, neutral and acidic compounds has been achieved.  相似文献   

15.
In this report, a novel polar monolithic capillary column is described for normal phase CEC (NP-CEC) of representative polar compounds including mono- and oligosaccharides, peptides, and basic drugs. The polar monolithic column, which was described in detail in the preceding paper, consisted of silica-based monolith bonded with 1H-imidazole-4,5-dicarbonitrile (IDCN) and is denoted as 2CN-OH-Monolith. Various retention parameters for neutral polar solutes (e.g., mono- and oligosaccharides) and charged polar solutes (e.g., peptides and basic drugs) were evaluated over a wide-range of elution conditions. These retention parameters yielded quantitative assessment for the polar interactions between the model solutes and the stationary phase under investigation as well as the effect of electromigration of charged solutes on their overall migration in NP-CEC. Furthermore, this investigation demonstrated that despite the possibility of achieving isocratic separation in NP-CEC for widely differing polar species, multistep-gradient elution in NP-CEC is preferred to bring about the rapid separation of a large number of polar species in a single run.  相似文献   

16.
A neutral naphthyl methacrylate‐based monolith (NMM) was introduced for RP‐CEC of various aromatic compounds via hydrophobic and π interactions. It was characterized over a wide range of elution conditions to gain insight into its RP retention mechanism toward the various solute probes under investigation. First, the NMM column exhibited cathodal EOF at various mobile phase compositions and pH suggesting that although the NMM column is void of fixed charges, it acquires a negative zeta potential. It is believed that the negative zeta potential is imparted by the adsorption of mobile phase ions to the NMM surface. The NMM column exhibited π–π interactions in addition to hydrophobic interactions due to the aromatic and nonpolar nature of its naphthyl ligands. In all cases, the retention of the various aromatic test solutes including PAHs, benzene derivatives, toluene derivatives, anilines and toluidine, tolunitrile and nitrotoluene positional isomers on the NMM column were compared to their retention on an octadecyl acrylate‐based monolithic column. Not only were the values of the retention factors of the various solutes on the NMM column higher than those obtained on the octadecyl acrylate‐based monolithic column under otherwise the same CEC conditions, but the elution orders were also different on both columns with a superior and unique selectivity exhibited by the NMM column.  相似文献   

17.
Dong J  Ou J  Dong X  Wu R  Ye M  Zou H 《Journal of separation science》2007,30(17):2986-2992
A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.  相似文献   

18.
Dong X  Dong J  Ou J  Zhu Y  Zou H 《Electrophoresis》2006,27(12):2518-2525
A polymer-based neutral monolithic capillary column was prepared by radical polymerization of glycidyl methacrylate and ethylene dimethacrylate in a 100 mum id fused-silica capillary, and the prepared monolithic column was subsequently modified based on a ring opening reaction of epoxide groups with 1 M lysine in solution (pH 8.0) at 75 degrees C for 10 h to produce a lysine chemically bonded stationary phases in capillary column. The ring opening reaction conditions were optimized so that the column could generate substantial EOF. Due to the zwitterionic functional groups of the lysine covalently bonded on the polymer monolithic rod, the prepared column can generate cathodic and anodic EOF by varying the pH values of running buffer during CEC separation. EOF reached the maximum of -2.0 x 10(-8) m2v(-1)s(-1) and 2.6 x 10(-8) m2v(-1)s(-1) with pH of the running buffer of 2.25 and 10, respectively. As a consequence, neutral compounds, ionic solutes such as phenols, aromatic acids, anilines, and basic pharmaceuticals were all successfully separated on the column by CEC. Hydrophobic interaction is responsible for separation of neutral analytes. In addition, the electrostatic and hydrophobic interaction and the electrophoretic migration play a significant role in separation of the ionic or ionizable analytes.  相似文献   

19.
A porous zwitterionic monolith was prepared by in situ covalent attachment of lysine to a γ‐glycidoxypropyltrimethosysilane‐modified silica monolith. The prepared column was used to perform neutral and ionized solutes separations by pressurized (pCEC). Due to the zwitterionic nature of the resulting stationary phase, the monolithic column provided both electrostatic attraction and repulsion sites for electrochromatographic retention for ionized solutes. Separation of several nucleotides was investigated on the monolithic column. It was shown that the nucleotides could be separated based on hydrophilic and electrostatic interactions between the stationary phase and analyte. Besides, the separation property of the zwitterionic silica monolith was compared with the use of diamine‐bonded silica monolith as stationary phase. As expected, the lysine monolith exhibited a lower retention for the five nucleotides, which was due to the dissociation of the external carboxylic acid groups, leading to electrostatic repulsion with negatively charged solutes. Under the same experimental conditions, separation of the five nucleotides on the zwitterionic column was in less than 8 min, while that on the diamine column was in approximately 60 min.  相似文献   

20.
Allen D  El Rassi Z 《The Analyst》2003,128(10):1249-1256
Three different synthetic routes have been introduced and evaluated for the preparation of amphiphilic silica-based monoliths possessing surface-bound octadecyl ligands and positively charged groups. The amphiphilic silica monoliths (designated as cationic C18-monoliths) have been designed for use in reversed-phase capillary electrochromatography (RP-CEC) with hydro-organic mobile phases. These amphiphilic stationary phases yielded anodic electroosmotic flow (EOF) over a wide range of mobile phase pH. The magnitude of EOF remained constant up to pH 4.0 and then decreased at pH > 4.0 due to the ionization of silanol groups and the subsequent decrease in the net positive surface charge density of the amphiphilic monoliths. The cationic C18-monoliths exhibited reversed-phase chromatography (RPC) behavior toward non-polar solutes (e.g., alkyl benzenes), which parallels that observed with octadecyl-silica (ODS) monoliths. On the other hand, the amphiphilic stationary phases exhibited both non-polar and polar interactions toward slightly polar solutes such as anilines and PTH-amino acids. CEC retention factor k* and velocity factor k*e, which reflects the contribution of the electrophoretic mobility, were evaluated for charged solutes such as anilines and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号