首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
At the DFT (U)PBE0/cc-pVDZ level the structural parameters of a hypothetical Fe@C 60 endocomplex are determined. The (A 1//C 3v )–Fe@C 60 state characterized by the electron spin square of 3.07 au, the free valence of 4.15, the dipole moment of 1.15 D, and the 172 pm Fe nuclear shift relative to the center of inertia of С60 corresponds to the energy minimum. The Stone–Wales rearrangement in the quasi-triplet state increases the endocomplex energy by 1.56 eV and by 0.79 eV in the quasi-quintet state.  相似文献   

2.
The temperature dependence of the heat capacity C p o of the [(Me3Si)7C60]2 fullerene complex was measured for the first time using precision adiabatic vacuum calorimetry over the temperature range 6.7–340 K and high-accuracy differential scanning calorimetry at 320–635 K. For the most part, the error in the C p o values was about ±0.5%. An irreversible endothermic effect caused by the splitting of the dimeric bond between fullerene fragments and the thermal decomposition of the complex was observed at 448–570 K. The thermodynamic characteristics of this transformation were calculated and analyzed. Multifractal analysis of the low-temperature (T < 50 K) heat capacity was performed, and conclusions were drawn concerning the character of the heterodynamicity of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H o (T) ? H o (0), S o (T) ? S o (0), and G o (T) ? H o (0) over the temperature range from T → 0 to 445 K and estimate the standard entropy of formation of the compound from simple substances at 298.15 K. The standard thermodynamic properties of [(Me3Si)7C60]2 are compared with those of the (C60)2 dimer, the [(η6-Ph2)2Cr]+[C60]?? fulleride, and the initial C60 fullerene.  相似文献   

3.
3′H-Cyclopropa[1,9](C60-Ih)[5,6]fullerene-3′-carboxylic acid can be synthesized in a good yield by cyclopropanation of fullerene C60 with 2-(dimethyl-λ4-sulfanylidene)acetates provided that the ester residue is readily hydrolyzable in acid medium.  相似文献   

4.
Indium strontium hydrogen nitrate SrIn2[PO3(OH)]4 was synthesized under mild hydrothermal conditions (T = 180 or 200°C) and characterized using IR spectroscopy, chemical analysis, and thermal analysis. A structure model obtained ab initio was refined by the Rietveld method: a= 9.6412(1) Å, b = 13.763(1) Å, c = 9.3579(1) Å, R obs = 0.0183, R p = 0.0493 (space group B2212, Z = 4). The acentricity of the structure was confirmed by SHG tests (I /I 2ω(SiO2) ≈ 2.0). In the SrIn2[PO3(OH)]4 structure, indium atoms reside in distorted InO6 octahedra and form, together with PO3(OH) tetrahedra, a mixed 3D structure {In2[PO3(OH)]4} 3∞ 2? whose voids are occupied by Sr2+ cations (CN = 8). The block-dimer In2(HPO4)10 is the most informative unit of the framework. Blocks are condensed into infinite columns running in the [101] direction. The compound is thermally stable up to 400°C.  相似文献   

5.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

6.
Isomerically pure endohedral metallofullerene Dy@C82(C 2v) was synthesized by the electric arc method, extracted from the soot with o-dichlorobenzene, isolated from the extract by HPLC, and characterized by mass spectrometry and spectrophotometry. The spectrophotometric titration of a solution of endohedral metallofullerene Dy@C82(C 2v) was conducted with potassium perchlorotriphenylmethide. The concentration of Dy@C82(C 2v) in o-dichlorobenzene was determined, and the molar absorption coefficients for its neutral and anionic forms were calculated (3.0?103 (at 927 nm) and 4.0?103 mol–1 L cm–1 (at 884 nm), respectively.  相似文献   

7.
The complex [UO2(SeO4)(C5H12N2O)2(H2O)] (I) was synthesized and studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are orthorhombic: a = 13.1661(3) Å, b = 16.4420(5) Å, c = 17.4548(6) Å, Pbca, Z = 8, R = 0.0423. The structural units of crystal I are chains with the composition coinciding with that of the compounds of the AB2M 3 1 crystal chemical group of the uranyl complexes (A = UO 2 2+ , B2 = SeO 4 2? , M1 = C5H12N2O and H2O).  相似文献   

8.
The quantum-chemical PM3 method was used to determine the structure of excited poly-C60(XII) and poly-C60(VIII) macromolecules containing diradical defects formed by cleavage of interpolyhedral C-C bonds and degradation of intrapolyhedral C=C bond. The relative energies of such excitations are estimated. The atomic free valences F A hybridization coefficients of valence-active atomic orbitals contributing maximum F aF A to the F A value are calculated. The valent isomerism of the C60(XII) dodecaradical is discussed. The calculations are performed using the GAMESS computer program and a new SDIAG algorithm for diagonalization of large dense symmetric matrices.  相似文献   

9.
The single crystals of [UO2(C2O4){CONH2N(CH3)2}2] were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 7.461(2) Å, b = 8.828(2) Å, c = 11.756(2) Å, β = 107.21(3)°, space group Pc, Z = 2, R = 2.94%. The structure comprises infinite chains [UO2(C2O4){CONH2N(CH3)2}2] extended along [001] and corresponding to the AT11M 2 1 crystallochemical group (A = UO 2 2+ , T11 = C2O 4 2? , M1 = N,N-CONH2N(CH3)2) of uranyl complexes. The chains are connected into a three-dimensional framework by hydrogen bonds involving the oxygen atoms of oxalate and uranyl ions and the N,N-dimethylcarbamide methyl groups.  相似文献   

10.
Heterometallic pivalate Co2Sm(Piv)7(2,4-Lut)2 (1) was prepared for the first time and structurally characterized at 293 and 160 K. Antiferromagnetic exchange interactions are dominant in complex 1. This compound experiences a first-order phase transition within 210–260 K. A set of thermodynamic functions was obtained for this complex (C p , H T 0 - H 180 0 , and S T 0 ), and parameters were determined for solid-phase thermolysis where samarium cobaltate SmCoO3 is the only product.  相似文献   

11.
The present research work reports the study on crystal structure, vibrational spectroscopy and thermal analysis of organic-inorganic hybrid compound (C6H5(CH2)2NH3)2CdCl4. Single crystals of bis(phenethylammonium)tetrachlorocadmate (C6H5(CH2)2NH3)2CdCl4 (PEA–Cd) were obtained by diffusion at room temperature. This compound crystallizes in the orthorhombic space group C2cb with unit cell parameters a = 7.4444(2) Å, b = 38.8965(3) Å, c = 7.3737(2) Å and Z = 4. Single crystal structure has been solved and refined to R = 0.036 and wR = 0.092. The structure consists of an extended [CdCl4]2– network and two [C6H5(CH2)2NH3]+ cations to form a two-dimensional perovskite system. The infrared (IR) spectrum of the title compound was recorded at room temperature. Differential scanning calorimetry (DSC) was used to investigate the phase transition; this compound exhibits a reversible single solid-solid phase transition.  相似文献   

12.
Arsenic 4-methoxy-8-mercaptoquinolinate As[C9H5(4-OCH3)NS]3 (I) was synthesized and studied by X-ray diffraction. Crystals are trigonal: space group R3, a = b = 13.9867(4) Å, c = 12.4991(5) Å, γ = 120°, V = 2117.58(12) Å3, ρ = 1.519 g/cm3, Z = 3. An arsenic atom in the crystal structure occupies a special position on axis 3. The structural unit of the crystal (neutral complex I) has symmetry C3. 4-Methoxy-8-mercaptoquinoline acts as a bidentate (N,S-) ligand. The coordination polyhedron of the arsenic atom is a symmetric octahedron (3S + 3N) or, with allowance for the lone electron pair, ψ-one-capped octahedron (3S + 3N + E). Bond lengths are as follows: As-S, 2.3179(7)Å; As…N 2.688(3) Å. The geometries of coordination polyhedra of arsenic atoms are compared in the crystal structures of As(C9H6NS)3, As[C9H5(2-CH3)NS]3, and As[C9H5(4-CH3)NS]3.  相似文献   

13.
A rotating-bomb calorimeter was used to measure the energy of combustion of crystalline fullerene chloride C60Cl30 · 0.09Cl2, Δc U° = (?24474 ± 135 kJ/mol). The result was used to calculate the standard enthalpy of formation, Δf H° (C60Cl30, cr) = 135 ± 135 kJ/mol, and the C-Cl bond energy, 195 ± 5 kJ/mol. The C-X (X = F, F, Cl, and Br) bond energies in fullerene C60 derivatives and other organic compounds are compared.  相似文献   

14.
A novel one-dimensional chain complex [Cd(NITpPy)2(N(CN)2)2)] n (NITpPy = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and characterized structurally. It crystallizes in the triclinic space group P \(\bar 1\) with a = 7.1742(13), b = 9.4913(17), c = 13.208(2) Å, α = 71.020(2)°, β=87.308(2)°, γ = 70.503(2)°, V = 799.8(3) Å3, C28H32CdN12O4, Mr = 713.06, Z = 1, ρ c = 1.48 g/cm3, μ(MoK α) = 0.736 mm?1, F(000) = 364, R = 0.0275 and wR = 0.0605 for 2702 observed reflections with I > 2σ(I). The crystal structure consists of infinite chains of [Cd(NITpPy)2(N(CN)2)2)] units linked by dicyanamide anions [N(CN)2]?. Each Cd2+ ion is six-coordinated with the geometry of a distorted octahedron.  相似文献   

15.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

16.
The structural parameters of the (2Σ+//Cv)-YbF, (1A1//C2v)-YbF2, (2A2//D3h)-YbF3, (1Ag//D2h)-YbF2Yb, (1Ag//C2h)-FYbF2YbF, (1A1//C2v)-FYbF2YbF, (1A1//C2v)-YbF2YbF2, (3B3u//D2h)-F2YbF2YbF2, (2A′//Cs)-FYbF2YbF2, and (3B2//С2v)-F2YbF2CeF2 molecules have been determined. Disproportionation of ytterbium monofluoride (2YbF → YbF2 + Yb + 0.46 eV) is less exothermic than dimerization (2YbF → YbF2Yb + 2.10 eV). The bond energy of the ytterbium difluoride molecules in the trans dimer (2.93 eV) exceeds those in the cis dimer (2.86 eV) and the coaxial dimer (1.66 eV). Ytterbium trifluoride dimerizes exothermically (2.95 eV) without spin pairing. The dipole and quadrupole moments of the molecules as well as the charges and spin populations of the atoms and the valence electron configurations of the lanthanides have been calculated.  相似文献   

17.
Rh2(OAc)4-catalyzed reaction of 2-(2-carbonylvinyl)-3-phenyl-2H-azirines with diazo esters proceeds through an intermediate generation of azirinium ylide suffering a nonstereoselective ring opening to form (3Z)- and (3E)-2-azahexa-1,3,5-trienes. The former depending on configuration of the C 5 =C 6 bond may undergo cyclization either in derivative of 2,3-dihydropyridine, or in pyrrolium ylide that isomerizes into a derivative of 1H-pyrrole. According to DFT calculation, the preferred formation of pyrroles at increasing volume of Z-substituent at the atom C 6 and of substituents at the atom C 1 of 2-azahexatriene occurs due to the destabilization of more sterically loaded transition states of 1,6-cyclization.  相似文献   

18.
The influence of pressure on the high spin-low spin phase transition (HL transition) in a model Fe(phen)2(NCS)2 (polymorph II) compound at room temperature was studied by optical spectroscopy. An increase in pressure from atmospheric to 1.814 hPa caused the complete conversion of the low-spin to high-spin phase with the transition pressure p 1/2 ↑ = 0.567 hPa at the equilibrium concentration of the high- and low-spin phases. Pressure drop caused the reverse HL transition with p 1/2 ↓ = 0.543 hPa. The HL reversible transition took place with the transition pressure p 1/2 = 0.555 hPa and hysteresis with width Δp 1/2 = 0.024 hPa. The p 1/2 value for the pressure-induced HL transition corresponded to the T 1/2 value under pressure for the temperature-induced HL transition. The pressure dependences of the fraction of the high-spin phase determined from four independent measurements of the influence of pressure on the temperature-induced HL transition and the pressure-induced HL transition obtained in this work were compared. The experimental data were used to calculate the interaction and elastic energy parameters for temperature- and pressure-induced HL transitions. The qualitative coincidence of the interaction parameters for pressure- and temperature-induced HL transitions and the equality of the interaction parameter to elastic energy under pressure led us to conclude that the influence of pressure in two experiments well corresponds to the interaction energy and does not correspond the Gibbs potential.  相似文献   

19.
The catalytic activity of the colloidal catalyst based on iron(III) hydroxide was studied in the decomposition of H2O2 in a neutral medium (pH 6.7). A colloidal micellar solution of iron(III) hydroxide after preparation was kept at 19–20 °С for 2 or 20 h without additives or with C2H5OH additives. The decomposition of H2O2 under the action of the colloidal catalyst (20 h) proceeds via the first-order reaction with the decay rate constant kd = 1.26?10–4 s–1, whereas the decay rate of the first-order reaction is kd = 0.77?10–4 s–1 for the colloidal catalyst (2 h) prepared in the presence of C2H5OH.  相似文献   

20.
Hydrogen bonding in the Cu5(PO4)2(OH)4 polymorphs pseudomalachite, ludjibaite and reichenbachite has been studied by low-temperature single-crystal X-ray diffraction (XRD; pseudomalachite) and solid-state density functional theory (DFT; pseudomalachite, ludjibaite, reichenbachite) calculations. Pseudomalachite at 100 K is monoclinic, P21/c, a = 4.4436(4), b = 5.7320(5), c = 16.9300(15) Å, β = 91.008(8)°, V = 431.15(7) Å3 and Z = 2. The structure has been refined to R 1 = 0.025 for 1383 unique observed reflections with |F o| ≥ 4σF. DFT calculations were done with the CRYSTAL14 software package. For pseudomalachite, the difference between the calculated and experimental H sites does not exceed 0.152 Å. Structural configurations around hydroxyl groups in all three polymorphs show many similarities. Each OH5 group is involved in a three-center (bifurcated) hydrogen bond with the H···A distances in the range of 2.141–2.460 Å and the D–H···A angles in the range of 122.41°–139.30°, whereas each OH6 group forms a four-center (trifurcated) bond (H···A = 2.093–2.593 Å; D–H···A = 122.79°–137.71°). The crystal structures of the Cu5(PO4)2(OH)4 polymorphs are based on three-dimensional frameworks of Cu and P polyhedra. The copper-centered octahedra share edges to form two-dimensional layers parallel to (100) in all three structures. The layers have square voids above and beneath PO4 tetrahedra that link adjacent layers by sharing O atoms with two CuO6 octahedra each. From the topological point of view, none of the polymorphs can be obtained from another by a displacive transformation, and therefore pseudomalachite, ludjibaite and reichenbachite can be viewed as combinatorial polymorphs. According to information-based structural complexity considerations, the three phases are very similar in their configurational entropies and preferential crystallization of one phase over another cannot be entropy driven and is probably governed by other mechanisms that may involve such factors as structures of prenucleation clusters, chemical admixtures, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号