首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central subsets of a discrete semigroup S have very strong combinatorial properties which are a consequence of the Central Sets Theorem . We investigate here the class of semigroups that have a subset with zero Følner density which satisfies the conclusion of the Central Sets Theorem. We show that this class includes any direct sum of countably many finite abelian groups as well as any subsemigroup of (?,+) which contains ?. We also show that if S and T are in this class and either both are left cancellative or T has a left identity, then S×T is in this class. We also extend a theorem proved in (Beiglböck et al. in Topology Appl., to appear), which states that, if p is an idempotent in β? whose members have positive density, then every member of p satisfies the Central Sets Theorem. We show that this holds for all commutative semigroups. Finally, we provide a simple elementary proof of the fact that any commutative semigroup satisfies the Strong Følner Condition.  相似文献   

2.
Let G be a countable discrete infinite amenable group which acts continuously on a compact metric space X and let μ be an ergodic G-invariant Borel probability measure on X. For a fixed tempered F?lner sequence {Fn} in G with limn→+∞|Fn|/log n= ∞, we prove the following result:h_top~B(G_μ, {F_n}) = h_μ(X, G),where G_μ is the set of generic points for μ with respect to {F_n} and h_top~B(G_μ, {F_n}) is the Bowen topological entropy(along {F_n}) on G_μ. This generalizes the classical result of Bowen(1973).  相似文献   

3.
In this paper a concept of amenability for an arbitrary subset A of discrete semigroup S called A-amenable is introduced and studied. This concept is characterized by several equivalent statements which are analogues of properties characterizing left amenable semigroups. We also obtain the relationship between this version of amenability and Følner’s condition.  相似文献   

4.
Let X be a closed subset of a locally compact second countable group G whose family of translates has finite VC-dimension. We show that the topological border of X has Haar measure 0. Under an extra technical hypothesis, this also holds if X is constructible. We deduce from this generic compact domination for definably amenable NIP groups.  相似文献   

5.
LetT be an invertible measure preserving transformation of a probability measure spaceX. Generalizing a recent result of Host and Kra, we prove that the averages\(T^{p1(u)} f\) converge inL 2 (X) for anyf 1 ,…,f r ?L (X), any polynomialsp 1 ,…,p r :f 1 ,...,:f 1 1\t8(X and and Følner sequence \s{\gF r \s} r \t8 in ? d .  相似文献   

6.
For amenable groups that have a Følner sequence {A n} satisfying $\overline {lim} \left| {A_n^{ - 1} A_n } \right|/\left| {A_n } \right|< + \infty $ we show that a subsequence ergodic theorem is valid for the visit times to a set of positive measure.  相似文献   

7.
Finite simple nonabelian groups G that are not π-closed for some set of primes π but have π-closed maximal subgroups (property (*) for (G, π)) are studied. We give a list L of finite simple groups that contains any group G with the above property (for some π). It is proved that 2 ? π for any pair (G, π) with property (*) (Theorem 1). In addition, we specify for any sporadic simple group G from L all sets of primes π such that the pair (G, π) has property (*) (Theorem 2). The proof uses the author’s results on the control of prime spectra of finite simple groups.  相似文献   

8.
Let G be a countable group that splits as a free product of groups of the form G = G 1 *···* G k * F N , where F N is a finitely generated free group. We identify the closure of the outer space PO(G, {G 1,..., G k }) for the axes topology with the space of projective minimal, very small (G, {G 1,..., G k })-trees, i.e. trees whose arc stabilizers are either trivial, or cyclic, closed under taking roots, and not conjugate into any of the G i ’s, and whose tripod stabilizers are trivial. Its topological dimension is equal to 3N + 2k ? 4, and the boundary has dimension 3N + 2k ? 5. We also prove that any very small (G, {G 1,..., G k })-tree has at most 2N + 2k?2 orbits of branch points.  相似文献   

9.
Frankl and Füredi in [1] conjectured that the r-graph with m edges formed by taking the first m sets in the colex ordering of N(r) has the largest Lagrangian of all r-graphs with m edges. Denote this r-graph by C r,m and the Lagrangian of a hypergraph by λ(G). In this paper, we first show that if \(\leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3 \end{array}} \right)\), G is a left-compressed 3-graph with m edges and on vertex set [t], the triple with minimum colex ordering in G c is (t ? 2 ? i)(t ? 2)t, then λ(G) ≤ λ(C 3,m ). As an implication, the conjecture of Frankl and Füredi is true for \(\left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right) - 6 \leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right)\).  相似文献   

10.
Let Γ < GL n (F) be a countable non-amenable linear group with a simple, center free Zariski closure. Let Sub(Γ) denote the space of all subgroups of Γ with the compact, metric, Chabauty topology. An invariant random subgroup (IRS) of Γ is a conjugation invariant Borel probability measure on Sub(Γ). An IRS is called non-trivial if it does not have an atom in the trivial group, i.e. if it is non-trivial almost surely. We denote by IRS0(Γ) the collection of all non-trivial IRS on Γ.
Theorem 0.1: With the above notation, there exists a free subgroup F < Γ and a non-discrete group topology on Γ such that for every μ ∈ IRS0(Γ) the following properties hold:

μ-almost every subgroup of Γ is open

  • F ·Δ = Γ for μ-almost every Δ ∈ Sub(Γ).
  • F ∩ Δ is infinitely generated, for every open subgroup. In particular, this holds for μ-almost every Δ ∈ Sub(Γ).
  • The map
Φ: (Sub(Γ), μ) → (Sub(F),Φ*μ) Δ → Δ ∩ F is an F-invariant isomorphism of probability spaces.A more technical version of this theorem is valid for general countable linear groups. We say that an action of Γ on a probability space, by measure preserving transformations, is almost surely non-free (ASNF) if almost all point stabilizers are non-trivial.Corollary 0.2: Let Γ be as in the Theorem above. Then the product of finitely many ASNF Γ-spaces, with the diagonal Γ action, is ASNF.Corollary 0.3: Let Γ < GLn(F) be a countable linear group, A Δ Γ the maximal normal amenable subgroup of Γ — its amenable radical. If μ ∈ IRS(Γ) is supported on amenable subgroups of Γ, then in fact it is supported on Sub(A). In particular, if A(Γ) = <e> then Δ = <e>, μ almost surely.  相似文献   

11.
Let G be a simple algebraic group of adjoint type over the field \(\mathbb {C}\) of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G. Let w be an element of the Weyl group W and let X(w) be the Schubert variety in G/B corresponding to w. Let α 0 denote the highest root of G with respect to T and B. Let P be the stabiliser of X(w) in G. In this paper, we prove that if G is simply laced and X(w) is smooth, then the connected component of the automorphism group of X(w) containing the identity automorphism equals P if and only if w ?1(α 0) is a negative root (see Theorem 4.2). We prove a partial result in the non simply laced case (see Theorem 6.6).  相似文献   

12.
Given a countable discrete amenable group G, does there exist a free action of G on a Lebesgue probability space which is both rigid and weakly mixing? The answer to this question is positive if G is abelian. An affirmative answer is given in this paper, in the case that G is solvable or residually finite. For a locally finite group, the question is reduced to an algebraic one. It is exemplified how the algebraic question can be positively resolved for some groups, whereas for others the algebraic viewpoint suggests the answer may be negative.  相似文献   

13.
14.
Let G be a graph and let its maximum degree and maximum average degree be denoted by Δ(G) and mad(G), respectively. A neighbor sum distinguishing k-edge colorings of graph G is a proper k-edge coloring of graph G such that, for any edge uvE(G), the sum of colors assigned on incident edges of u is different from the sum of colors assigned on incident edges of v. The smallest value of k in such a coloring of G is denoted by χ(G). Flandrin et al. proposed the following conjecture that χ (G) ≤ Δ(G) + 2 for any connected graph with at least 3 vertices and GC5. In this paper, we prove that the conjecture holds for a normal graph with mad(G) < \(\tfrac{{37}}{{12}}\) and Δ(G) ≥ 7.  相似文献   

15.
A subgroup A of a p-group G is said to be soft in G if C G (A) = A and |N G (A/A| = p. In this paper we determined finite p-groups all of whose maximal abelian subgroups are soft; see Theorem A and Proposition 2.4.  相似文献   

16.
A set S of vertices is independent or stable in a graph G, and we write S ∈ Ind (G), if no two vertices from S are adjacent, and α(G) is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets. G is called a König–Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. The number def (G) = | V(G) | ?2μ(G) is the deficiency of G. The number \({d(G)=\max\{\left\vert S\right\vert -\left\vert N(S)\right\vert :S\in\mathrm{Ind}(G)\}}\) is the critical difference of G. An independent set A is critical if \({\left\vert A\right\vert -\left\vert N(A)\right\vert =d(G)}\) , where N(S) is the neighborhood of S, and α c (G) denotes the maximum size of a critical independent set. Larson (Eur J Comb 32:294–300, 2011) demonstrated that G is a König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., α c (G) = α(G). In this paper we prove that: (i) \({d(G)=\left \vert \mathrm{core}(G) \right \vert -\left \vert N (\mathrm{core}(G))\right\vert =\alpha(G)-\mu(G)=def \left(G\right)}\) holds for every König–Egerváry graph G; (ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.  相似文献   

17.
In this paper, we provide a common generalization to the well-known Erdös–Ko–Rado Theorem, Frankl–Wilson Theorem, Alon–Babai–Suzuki Theorem, and Snevily Theorem on set systems with L-intersections. As a consequence, we derive a result which strengthens substantially the well-known theorem on set systems with k-wise L-intersections by Füredi and Sudakov [J. Combin. Theory, Ser. A, 105, 143–159 (2004)]. We will also derive similar results on L-intersecting families of subspaces of an n-dimensional vector space over a finite field F q , where q is a prime power.  相似文献   

18.
19.
It is shown that any semilattice of bicompact G-extensions can be realized as a semilattice for a pseudocompact phase space with an action of a discrete group. The following examples are given: lattices of bicompact G-extensions which cannot be lattices of bicompact extensions of any Tikhonov space and a pseudocompact G-space with a discrete acting group whose semilattice of bicompact G-extensions has a countable number of minimal elements.  相似文献   

20.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号