首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.  相似文献   

2.
A theoretical study on Ba adsorption on the rutile TiO(2) (110) surface has been carried out by means of plane-wave, plane augmented waves potential, density functional theory calculations. A model consisting on a (4 x 1) unit cell, which corresponds to coverage of 0.125 monolayer (ML), has been used and several potential adsorption sites on the stoichiometric surface have been tried. It has been found that the most stable site is with the Ba atom in a position where it is bound to two bridging oxygen atoms and an in-plane oxygen atom forming equivalent bonds (OB site). The adsorption energy is 0.71 eV referred to the formation of Ba bulk and is about 0.3 eV more stable than other adsorption sites. The Ba-surface interaction produces some surface relaxation in all cases. The OB site is stable at moderate temperatures; however, after extensive molecular dynamic calculations it is found that atoms diffuse on the surface by means of a jumping mechanism among several stable positions. The presence of bridging oxygen vacancies does not alter significantly this picture since the adsorption close to defects is not energetically favorable and the atoms tend to move away from vacancies. A strong covalent character has been found in the nature of the bonding, which contrasts with previous suggestions of the existence of Ba(2+) species on the surface. When the coverage is increased to 0.25 ML by adding a Ba atom to the supercell, there is a significant repulsion between Ba atoms that move away from each other to occupy OB sites. Thus, the adsorption energy values per atom diminish. For the stoichiometric surface two equivalent adsorption patterns are found, whereas only one is found for the defective surface.  相似文献   

3.
The Structure of an unusual Tetramere of Lithium Phenoxide: [C6H5OLi · C4H8O]4 · C6H5OH Single crystals of lithium phenoxide have been obtained from THF. In the structure (P 21/n, Z = 4, a = 11.69 Å, b = 21.15 Å, c = 18.55 Å, β = 91.11°) four lithium atoms and four phenoxide oxygen atoms are cubically arranged. Further, each lithium atom coordinates the oxygen atom of a tetrahydrofuran molecule. The ideal cubeform structure is disturbed by one phenol molecule which is coordinated in addition to four phenoxide and four THF molecules. Hence, one edge of the cube (Li4? O4) is substituted by the coordination of the phenol oxygen atom O5 with Li4 and hydrogen bonding between O4 and the hydroxy group of phenol. Van der Waals forces are the only interaction between these complexes.  相似文献   

4.
The structure and energetics of complexes obtained upon interaction between cysteine and Zn2+, Cd2+, Hg2+ and Cu2+ cations were studied using quantum chemical density functional theory calculations with the 6-311++G** orbital basis set and relativistic pseudopotentials for the cations. Different coordination sites for metal ions on several cysteine conformers were considered. In their lowest energy complexes with the amino acid, the Zn2+ and Cd2+ cations appear to be three-coordinated to carbonyl oxygen, nitrogen and sulfur atoms, whereas the Cu2+ and Hg2+ ions are coordinated to both the carbonyl oxygen and sulfur atoms of one of the zwitterion forms of the amino acid. Bonds of metal cations with the coordination sites are mainly ionic except those established with sulfur, which show a small covalent character that become most significant when Cu2+ and Hg2+ are involved. The order of metal ion affinity proposed is Cu>Zn>Hg>Cd.  相似文献   

5.
Lithium and sodium complexes of dimethyl ether (DME) and dimethoxyethane (DXE) were produced by reactions of laser-vaporized metal atoms with organic vapors in a pulsed nozzle cluster source. The mono-ligand complexes were studied by photoionization and pulsed field ionization zero electron kinetic energy (ZEKE) spectroscopy. Vibrationally resolved ZEKE spectra were obtained for Li(DME), Na(DME) and Li(DXE) and a photoionization efficiency spectrum for Na(DXE). The ZEKE spectra were analyzed by comparing with the spectra of other metal-ether complexes and with electronic structure calculations and spectral simulations. Major vibrations measured for the M(DME) (M=Li,Na) ions were M-O and C-O stretches and M-O-C and C-O-C bends. These vibrations and additional O-Li-O and O-C-C-O bends were observed for the Li(DXE) ion. The M(DME) complexes were in C2v symmetry with the metal atom binding to oxygen, whereas Li(DXE) was in a C2 ring configuration with the Li atom attaching to both oxygen atoms. Moreover, the ionization energies of these complexes were measured from the ZEKE or photoionization spectra and bond dissociation energies were derived from a thermodynamic cycle.  相似文献   

6.
Four Schiff base complexes, [Zn2L2(NCS)2] ( 1 ), [Cd2L2(NCS)2]n ( 2 ), [Zn4L2(N3)2Cl4(OH2)(CH3OH)] ( 3 ), and [Cu4L2(N3)2Cl4(OH2)(CH3OH)] ( 4 ) (where L = 2‐[(2‐dimethylaminoethylimino)methyl]phenol), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar polynuclear complexes. In 1 , each Zn atom has a slightly distorted square‐pyramidal coordination configuration. In the basal plane, the Zn atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The apical position is occupied by one terminal N atom of a coordinated thiocyanate anion. The Zn···Zn separation is 3.179(3) Å. While in 2 , the Cd1 atom is six‐coordinated in an octahedral coordination. In the equatorial plane, the Cd1 atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The axial positions are occupied by the terminal N and S atoms from two bridging thiocyanate anions. The coordination of Cd2 atom in 2 is similar to those of the zinc atoms in 1 . The Cd···Cd separation is 3.425(2) Å. Both 3 and 4 are novel tetra‐nuclear complexes. Each metal atom in the complexes has a slightly distorted square‐pyramidal coordination. The arrangements of the terminal metal atoms are similar, involving one O and two N atoms of one L ligand and one bridging Cl atom defining the basal plane, and one O atom of a coordinated water molecule or MeOH molecule occupying the apical position. The coordinations of the central metal atoms are also similar. The basal plane of each metal atom involves one O atom of one L ligand, one terminal Cl atom, and two terminal N atoms from two bridging azide groups. The apical position is occupied by a bridging Cl atom which also acts as a basal donor atom of the terminal metal atom. The Schiff base ligand and the four complexes showed high selectivity and antibacterial activities against most of the bacteria.  相似文献   

7.
CO adsorption on Pd atoms deposited on MgO(100) thin films has been studied by means of thermal desorption (TDS) and Fourier transform infrared (FTIR) spectroscopies. CO desorbs from the adsorbed Pd atoms at a temperature of about 250 K, which corresponds to a binding energy, E(b), of about 0.7 +/- 0.1 eV. FTIR spectra suggest that at saturation two different sites for CO adsorption exist on a single Pd atom. The vibrational frequency of the most stable, singly adsorbed CO molecule is 2055 cm(-)(1). Density functional cluster model calculations have been used to model possible defect sites at the MgO surface where the Pd atoms are likely to be adsorbed. CO/Pd complexes located at regular or low-coordinated O anions of the surface exhibit considerably stronger binding energies, E(b) = 2-2.5 eV, and larger vibrational shifts than were observed in the experiment. CO/Pd complexes located at oxygen vacancies (F or F(+) centers) are characterized by much smaller binding energies, E(b) = 0.5 +/- 0.2 or 0.7 +/- 0.2 eV, which are in agreement with the experimental value. CO/Pd complexes located at the paramagnetic F(+) centers show vibrational frequencies in closest agreement with the experimental data. These comparisons therefore suggest that the Pd atoms are mainly adsorbed at oxygen vacancies.  相似文献   

8.
Three novel chiral Schiff Base ligands (H2L) were prepared from the condensation reaction of 3‐formyl acetylacetone with the amino acids L ‐alanine, L ‐phenylalanine, and L ‐threonine. X‐ray single crystal analyses revealed that the Schiff Base compounds exist as enamine tautomers in the solid state. The molecular structure of the compounds is stabilized by an intramolecular hydrogen bridge between the enamine NH function and a carbonyl oxygen atom of the pentandione residue. Treatment of the ligands H2L with copper(II) actetate in the presence of pyridine led to the formation of copper complexes [CuL(py)]. In each of the complexes the copper atoms adopt a distorted square‐pyramidal coordination. Three of the basal coordination sites are occupied by the doubly deprotonated Schiff Bases L2– which act as tridentate chelating O, N, O‐ligands. The remaining coordination sites are occupied by a pyridine ligand at the base and a carboxyl oxygen atom of a neighboring complex at the apical position. The latter coordination is responsible for a catenation of the complexes in the solid state.  相似文献   

9.
The stabilization energies (ΔEform) calculated for the formation of the Li+ complexes with mono‐, di‐ tri‐ and tetra‐glyme (G1, G2, G3 and G4) at the MP2/6‐311G** level were ?61.0, ?79.5, ?95.6 and ?107.7 kcal mol?1, respectively. The electrostatic and induction interactions are the major sources of the attraction in the complexes. Although the ΔEform increases by the increase of the number of the O???Li contact, the ΔEform per oxygen atom decreases. The negative charge on the oxygen atom that has contact with the Li+ weakens the attractive electrostatic and induction interactions of other oxygen atoms with the Li+. The binding energies calculated for the [Li(glyme)]+ complexes with TFSA? anion (glyme=G1, G2, G3, and G4) were ?106.5, ?93.7, ?82.8, and ?70.0 kcal mol?1, respectively. The binding energies for the complexes are significantly smaller than that for the Li+ with the TFSA? anion. The binding energy decreases by the increase of the glyme chain length. The weak attraction between the [Li(glyme)]+ complex (glyme=G3 and G4) and TFSA? anion is one of the causes of the fast diffusion of the [Li(glyme)]+ complex in the mixture of the glyme and the Li salt in spite of the large size of the [Li(glyme)]+ complex. The HOMO energy level of glyme in the [Li(glyme)]+ complex is significantly lower than that of isolated glyme, which shows that the interaction of the Li+ with the oxygen atoms of glyme increases the oxidative stability of the glyme.  相似文献   

10.
The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two‐dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdII atoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis‐chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIII atoms via cyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIII atoms via cyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two‐dimensional network structure lying parallel to the bc plane. In the crystal structure, these two‐dimensional networks are linked via N—H...N hydrogen bonds involving an en NH2 H atom and a cyanide N atom, leading to the formation of a three‐dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.  相似文献   

11.
用水热法合成了两种新的配合物[Cd2(e,e-trans-chdc)2(bipy)2(H2O)2].H2O(1)和[Mn2(e,a-cis-chdc)2(phen)2(H2O)2].2H2O(2)(chdc=1,2-环己二羧酸,bipy=2,2′-联吡啶和phen=1,10-邻菲咯啉),用X-射线单晶衍射分析确定了配合物的晶体结构。配合物1和2均为双核分子。配合物1中,2个镉髤离子由2个1,2-环己二羧酸根以e,e-trans配位方式桥联,每个镉髤离子与1个2,2′-联吡啶的2个氮原子、2个1,2-环己二羧酸根的4个氧原子及1个水分子中的氧原子配位,形成了单帽变形三棱柱构型。配合物2中,2个锰髤离子由2个1,2-环己二羧酸根以e,a-cis配位方式桥联,每个锰髤离子与1个1,10-邻菲咯啉的2个氮原子、2个1,2-环己二羧酸根的3个氧原子及1个水分子中的氧原子配位,形成了畸变的八面体构型。配合物1和2分子之间都存在π-π堆积和O-H…O、C-H…O弱作用,进而将双核分子连接成三维超分子网络结构。配合物的荧光均来自于配体的荧光。  相似文献   

12.
The adsorption possibilities of oxygen atoms at Al (111) surface for different oxygen atom coverages (Θ) from 0.25 to 1 ml have been studied using first principles based on density functional theory with generalized gradient approximation. The results show that the interstitial sites on Al (111) surface are relatively stable, in which binding energies are 0.6 ~ 1 eV/atom lower than those on surface face centered cubic (fcc) sites for the different coverages. The binding energy and work function of the oxygen‐adsorbed surface increase with the oxygen atom coverage. Moreover, the oxygen atom at one tetrahedral site of Al (111) subsurface becomes more and more unstable with the decrease of the coverage, and it moves up to the Al (111) surface hexagonal close packed (hcp) site at Θ = 0.25. All the octahedral absorption sites are also unstable in relatively lower coverages (Θ = 0.5 and 0.25). The bond length and overlap population between Al and O, including the relaxation effects on the oxygen atom coverage are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
应用分子力学计算得到了α-丙氨酸和L-组氨酸在溶液中的分子结构。在此基础上, 通过对镧系离子诱导位移的分析和模拟, 计算了氨基酸镧系离子配合物的13^C NMR作接触位移, 模拟了配合物的分子结构。结果表明, 在α-丙氨酸镧系离子配合物中, Ce^3+, Pr^3+, Nd^3+与丙氨酸的一个氧原子和一个氮原子形成双齿配位; Sm^3+, Eu^3+, Tb^3+, Dy^3+, Ho^3+, Er^3+, Tm^3+, Yb^3+则与两个氧原子形成双齿配位, 在L-组氨酸镧系离子配合物中, Ce^3+~Eu^3+与组氨酸的两个氧原子和α-氨基的氮原子形成三齿配位, 镧系离子Tb^3+~Yb^3+则与两个氧原子形成双齿配位, 同时, 还讨论了pH条件对氨基酸镧系离子配合物结构的影响。  相似文献   

14.
The nature of the much debated valence state of an interstitial oxygen atom in oxygen-doped La2CuO4 is the subject of this paper. In model cluster calculations, we studied the position, charge, and spin state of the interstitial oxygen atoms in this superconductor. The models considered allow the interstitial oxygen to move off a symmetrical position, to have varying spin and charge, and to be surrounded by various magnetic environments. UB3LYP calculations show that a model having an interstitial oxygen atom with a total spin of 1 is lowest in energy; the interstitial oxygen atoms here act as stable radicals with a net charge of -1. These results agree with experimental evidence for the paramagnetic behavior for interstitial atoms. The energy associated with a spin flip at a Cu site in our models is lower if interstitial oxygen has a local electron spin density, compared to the case when it does not. We provide a possible explanation for the increase of the doping concentrations of interstitial oxygen with a decrease of the Néel temperature of this system. The relative stability of the models we consider depends on their spin states, accompanied by structural changes; this explains indirectly the experimental change of the slope (from 2 to 1.3) of the linear relationship between the hole concentration and the oxygen content. Our results support a stripe phase in high temperature superconductivity; in our calculations, hole doping to the copper oxide layer comes only through the formation of an oxygen interstitial pair, not from any change of the local structural environment and magnetic field around the single interstitial.  相似文献   

15.
The complex structures and interactions of sulfur‐containing chelating resin poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfide (PVBS), poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfoxide (PVBSO), and poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfone (PVBSO2) with divalent metal chlorides (Cu(II), Ni(II), Zn(II), Cd(II), and Pd(II)) were investigated theoretically. Results indicate that PVBS tends to coordinate with metal ions by sulfur and oxygen atoms forming five‐membered ring chelating complexes; while PVBSO and PVBSO2 prefer to interact with metal ions by the oxygen atom of the sulfoxide or sulfone and hydroxyl group to form six‐membered ring chelating compounds. Theoretical calculations reveal that sulfur atoms of PVBS are the main contributor when coordinate with metal ions, while oxygen atoms also take part in the coordination with Cu(II), Zn(II), and Cd(II). As for PVBSO, the oxygen atoms of sulfoxide group play a key role in the coordination, but sulfur and hydroxyl oxygen also participate in the coordination. Similarly, sulfone group oxygen atoms of PVBSO2 dominate the coordination of Ni(II), Cu(II), and Pd(II), while the affinities of Zn(II) and Cd(II) are mainly attributed to the hydroxyl oxygen atoms. The computational results are in good agreement with the XPS analysis. Combined the theoretical and experimental results, further understanding of the structural information on the complexes was achieved and the adsorption mechanism was confirmed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
The title complex, [Li2(C6H3N2O5)2(H2O)4], contains two kinds of Li atoms, viz. five‐coordinated and four‐coordinated. The five‐coordinated Li ion has a tetragonal–pyramidal geometry, with a water molecule in the apical position and four O atoms from two 2,4‐dinitrophenolate (2,4‐DNP) ligands in the basal plane. The four‐coordinated Li ion has a tetrahedral geometry, with three water molecules and one phenolate O atom of a 2,4‐DNP ligand. The Li ions are bridged by a phenolate O atom, giving the complex a dinuclear structure. The crystal packing is stabilized by O—H...O hydrogen‐bonding interactions involving the water molecules and nitro O atoms.  相似文献   

17.
In a preliminary investigation of the bonding between the sub-lattices of lithium and of graphite in intercalation compounds, molecular orbital calculations are performed on systems of Li atoms complexed to one or both sides of polynuclear aromatic hydrocarbons. Energy wells calculated reveal possible sites offered to the Li atoms above the aromatic plane to form complexes in both central and edge regions of the molecule. The influence of additional complexed Li atoms on the migratory tendency of a given Li atom is also investigated, and observations made on the effect of the complexed Li atoms on the C-C bonds of the hydrocarbon.  相似文献   

18.
Changes in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields. It is found that both Fe and O atoms accommodate some of the charge around the Li+ ion, evidently in a hybridized Fe-O state. The O 2p levels appear to be fully occupied at the composition LiFePO4. With delithiation, however, these states are partially emptied, suggestive of a more covalent bonding to the oxygen atom in FePO4 as compared to LiFePO4. The same behavior is found for the white lines at the Fe L2,3-edges, which also undergo a shift in energy upon delithiation. A charge transfer of up to 0.48 electrons is found at the Fe atoms, as determined from white line intensity variations after delithiation, while the remaining charge is compensated by O atoms. No changes are evident at the P L2,3-edges.  相似文献   

19.
《Mendeleev Communications》2022,32(3):302-304
Possible models for the arrangement of hydrogen atoms in the sites of the cubic lattice of titanium oxyhydride TiOyHp with vacancies in the metallic and nonmetallic sublattices are considered for the first time. It has been established that interstitial H atoms in oxyhydrides occupy vacant octahedral sites 4(b) of the oxygen sublattice. No displacement of H atoms in tetrahedral sites 8(c) is observed.  相似文献   

20.
Optimal structures, electronic and thermodynamic properties of the title complexes are presented. The stability of the hydrogen bonded systems is enhanced by the increasing dipole moments whereas in the halogen bonded systems it is also affected by the atom size in the diatomics. The consecutive addition of fluorine atoms to the pyridine moiety results in the decrease of the interaction energy for both types of the investigated bonds. The substitution on the meta sites in pyridine leads to more stable complexes than the substitution in the ortho position. The role of substitution on electric polarization and electrostatic forces is estimated by the symmetry‐adapted perturbation theory energy decomposition. The predicted Gibbs free energies of the complexes of mono fluorinated pyridines with HCl, HF, and ClF are from ?12 to ?22 kJ mol?1 at 200 K. The possible experimental identification of the complexes with respect to the vibrational modes is discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号