首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new type of ducted pulse thermal actuators with a high pulse repetition frequency is proposed to control wing buffeting at transonic flight velocities. Ducted pulse thermal actuators can operate up to frequencies of about 1 kHz, which is sufficient for controlling the majority of aerodynamic processes at high subsonic flow velocities. As the use of a pulse thermal actuator in the regime of tangential injection of a jet is less efficient from the energy viewpoint than in the regime of boundary layer suction, an ejector-type pulse thermal actuator is proposed for implementation of the suction regime.  相似文献   

2.
低雷诺数俯仰振荡翼型等离子体流动控制   总被引:2,自引:2,他引:0  
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   

3.
Side forces on slender bodies of revolution at medium to high angles of attack (AOA > 30°) has been known from a large number of investigations. Asymmetric vortex pairs over a slender body are believed to be the principle cause of the side forces. Under some flight conditions, this side force may be as large as the normal force acting on the slender body. In this paper, experimental results are presented for side force control on a cone-cylinder slender body by using microfabricated balloon actuators. The micro balloon actuators are made of polydimethylsiloxane (PDMS) elastomer by using micro molding techniques. They can be packaged on curve surfaces of a cone-cylinder slender body. As actuator is actuated, the micro balloon actuator inflates about 1.2 mm vertically, which is about 2.4% of the cylinder diameter D (=50 mm) of the cone-cylinder slender body. Micro balloon actuators are actuated at different roll angles of a cone-cylinder slender body. Aerodynamic force measurement results indicate the effects of micro balloon actuators vary at different actuation locations on the cone-cylinder slender body. The side forces can be significantly reduced if the actuators are actuated in the weak vortex side (the side corresponding to the asymmetric vortex which is far from the surface) and actuation angles are located at about 50–60° (the actuation angle here is measured from stagnation line of the incidence plane toward weak vortex side direction). Significant changes are noticed from the surface pressure, as well as leeside vortex flow field, measurement. Micro balloon actuators change nose shapes of the slender body which decide adverse-pressure-gradient values and directly influence the origin of the separation lines and characteristics of the separated vortices over the leeside surface.  相似文献   

4.
This paper reports on the effects of a series of fluid-dynamic dielectric barrier discharge plasma actuators on a NACA0015 airfoil at high angle of attack. A set of jet actuators able to produce plasma jets with different directions (vectoring effect) and operated at different on/off duty cycle frequencies are used. The experiments are performed in a wind tunnel facility. The vectorized jet and the transient of the flow induced by unsteady duty cycle operation of each actuator are examined and the effectiveness of the actuator to recover stall condition in the range of Reynolds numbers between 1.0 × 105 and 5.0 × 105 (based on airfoil chord), is investigated. The actuator placed on the leading edge of the airfoil presents the most effective stall recovery. No significant effects can be observed for different orientations of the jet. An increase of the stall recovery is detected when the actuator is operated in unsteady operation mode. Moreover, the frequency of the on/off duty cycle that maximizes the stall recovery is found to be a function of the free stream velocity. This frequency seems to scale with the boundary layer thickness at the position of the actuator. A lift coefficient increase at low free stream velocities appears to linearly depend on the supply voltage.  相似文献   

5.
《Comptes Rendus Mecanique》2019,347(12):953-966
Piezoelectric bimorph actuators are used in a variety of applications, including micro positioning, vibration control, and micro robotics. The nature of the aforementioned applications calls for the dynamic characteristics identification of actuator at the embodiment design stage. For decades, many linear models have been presented to describe the dynamic behavior of this type of actuators; however, in many situations, such as resonant actuation, the piezoelectric actuators exhibit a softening nonlinear behavior; hence, an accurate dynamic model is demanded to properly predict the nonlinearity. In this study, first, the nonlinear stress–strain relationship of a piezoelectric material at high frequencies is modified. Then, based on the obtained constitutive equations and Euler–Bernoulli beam theory, a continuous nonlinear dynamic model for a piezoelectric bending actuator is presented. Next, the method of multiple scales is used to solve the discretized nonlinear differential equations. Finally, the results are compared with the ones obtained experimentally and nonlinear parameters are identified considering frequency response and phase response simultaneously. Also, in order to evaluate the accuracy of the proposed model, it is tested out of the identification range as well.  相似文献   

6.
张鑫  王勋年 《力学学报》2023,55(2):285-298
正弦交流介质阻挡放电等离子体流动控制技术是基于等离子体激励的主动流动控制技术,具有响应时间短、结构简单、能耗低、不需要额外气源装置等优点,在飞行器增升减阻、抑振降噪、助燃防冰等方面具有广阔的应用前景.针对“激励器消耗的大部分能量尚未被挖掘利用、诱导流场的完整演化过程尚未完全掌握、诱导流场的演化机制尚不明确”这三方面问题,本文首先从激励器诱导流场的空间结构、时空演化过程、演化机制三个方面回顾总结了激励器诱导流场的研究进展.在诱导流场空间结构方面,发现了高电压激励下诱导射流的湍流特性,辨析了壁面拟序结构与无量纲激励参数之间的关联机制;从激励器诱导声能方面挖掘出了激励器潜在的能量,发现了“等离子体诱导超声波与诱导声流”的新现象,提出了声激励机制;在时空演化过程方面,阐明了激励器诱导流场从薄型壁射流发展为“拱形”射流、再演变为启动涡,最终形成准定常射流的完整演化过程;在演化机制方面,结合声学特性提出了以“升推”为主的诱导流场演化机制.其次,围绕激励器诱导流场,进一步凝练出下一步研究重点,为突破等离子体流动控制技术瓶颈,打通“概念创新—技术突破—演示验证”的创新链路,实现工程应用提供支撑.  相似文献   

7.
Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5–10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1–50%), and at high energy coupling efficiency (up to 80–85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2–1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow control authority similar to pulsed DC actuators, with a significantly reduced power budget.  相似文献   

8.
This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer–metal composite(IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples with Pt and Ag electrodes were manufactured, and the large nonlinear deformation and the effect of curvature on surface electrode resistance of the IPMC samples were investigated experimentally and theoretically. A distributed electrical model was modified for calculating the distribution of voltage along the bending actuator. Then an irreversible thermodynamic model that could predict the curvature of a unit part of an IPMC actuator is combined with the electrical model so that an analytical electromechanical model is developed. The electromechanical model is then validated against the experimental results obtained from Pt-and Ag-IPMC actuators under various excitation voltages. The good agreement between the electromechanical model and the actuators shows that the analytical electromechanical model can accurately describe the large nonlinear quasi-static deflection behavior of IPMC actuators.  相似文献   

9.
A large number of investigations have been carried out to study the aerodynamic characteristics of grids and permeable plates completely covering a pipe section [1]. The theoretical bases of the external aerodynamics of permeable bodies are established in [2], where the concept of a uniformly permeable surface is introduced and the problem of flow past a permeable plate at a small angle of attack is solved. Papers [3, 4] are devoted to the solution of problems of a jet flow of ideal incompressible fluid past a permeable wedge and a plate. The flow past a wedge with a high degree of permeability at low subsonic velocities was investigated theoretically and experimentally in [5]. Papers [6, 7] are devoted to the experimental investigation of the aerodynamic characteristics of plates and disks at low subsonic velocities. The results of the experimental investigations of permeable bodies are given in [8]. In the present paper the aerodynamic characteristics of permeable disks positioned perpendicular to the direction of the oncoming flow are investigated experimentally in a wide range of variation of the perforation parameters and the subsonic free-stream flow velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 123–128, July–August, 1986.  相似文献   

10.
Large-scale failure modes of dielectric elastomer actuators   总被引:1,自引:0,他引:1  
Dielectric elastomer actuators (DEAs) show promise for robotic and mechatronic applications. However, to date, these actuators have experienced high rates of failure that have prevented their practical application. Here, large scale modes of failure of DEAs and their performance limits are studied. The objective is to provide design guidelines and bound the performance of DEAs that avoid failure. An idealized DEA is modeled and its failure is predicted as a function of film pre-stretch used during actuator fabrication, actuation voltage, and stretch rate. Three failure modes are considered: pull-in, dielectric strength, and material strength. Each failure mode is shown to dominate for different combinations of pre-stretch and stretch rate. High stretch rates lead to dielectric strength failure while low stretch rates lead to pull-in failure. Material strength failure is less important for most cases. Model predictions are validated experimentally using practical DEAs operating under load. This study suggests that DEAs cannot be operated reliably under load for long periods of time or low stretch rates due to pull-in failure limitations. To be reliable, DEAs must be used for short periods of time with high stretch rates.  相似文献   

11.
The effect of pulsed jet vortex generators on the structure of an adverse pressure gradient turbulent boundary layer flow was investigated. Two geometrically optimised vortex generator configurations were used, co-rotating and counter-rotating. The duty cycle and pulse frequency were both varied and measurements of the skin friction (using hot films) and flow structure (using stereo PIV) were performed downstream of the actuators. The augmentation of the mean wall shear stress was found to be dependent on the net mass flow injected by the actuators. A quasi steady flow structure was found to develop far downstream of the injection location for the highest pulse frequency tested. The actuator near field flow structure was observed to respond very quickly to variations in the jet exit velocity.  相似文献   

12.
SparkJet characterizations in quiescent and supersonic flowfields   总被引:1,自引:0,他引:1  
The aerodynamic community has studied active flow control actuators for some time, and developments have led to a wide variety of devices with various features and operating mechanisms. The design requirements for a practical actuator used for active flow control include reliable operation, requisite frequency and amplitude modulation capabilities, and a reasonable lifespan while maintaining minimal cost and design complexity. An active flow control device called the SparkJet actuator has been developed for high-speed flight control and incorporates no mechanical/moving parts, zero net mass flux capabilities and the ability to tune the operating frequency and momentum throughput. This actuator utilizes electrical power to deliver high-momentum flow with a very fast response time. The SparkJet actuator was characterized on the benchtop using a laser-based microschlieren visualization technique and maximum blast wave and jet front velocities of ~400 and ~310 m/s were, respectively, measured in the flowfield. An increase in jet front velocity from 240 to 310 m/s during subatmospheric (60 kPa) testing reveals that the actuator may have greater control authority at lower ambient pressures, which correspond to high-altitude flight conditions for air vehicles. A SparkJet array was integrated into a flat plate and tested in a Mach 1.5 crossflow. Phase-conditioned shadowgraph results revealed a maximum flow deflection angle of 5° created by the SparkJet 275 µs after the actuator was triggered in single-shot mode. Burst mode operation of frequencies up to 700 Hz revealed similar results during wind tunnel testing. Following these tests, the actuator trigger mechanism was improved and the ability of the actuator to be discharged in burst mode at a frequency of 1 kHz was achieved.  相似文献   

13.
磁头精定位控制中压电致动特征的解析解   总被引:1,自引:0,他引:1  
王杰  周又和 《力学学报》2002,34(4):622-628
利用压电弹性介质的二维本构关系,对于分割电极片状压电致动器在恒定的反平行电场作用下的电-力致动特性,在对自由端边界作圣维南意义下的放松处理后,采用弹性力学的半逆求解方法,导出了其力-电耦合的静态位移和应力分布的解析解.通过将所得解析解与没有简化假设的有限元数值解进行比较,结果表明:所得解析解的致动特性(即自由端位移随外加电压的变化特征)与数值解的结果几乎完全重合,表明其二维解析解是有效和可靠的.  相似文献   

14.
阳鹏宇  张鑫  赖庆仁  车兵辉  陈磊 《力学学报》2021,53(12):3321-3330
等离子体流动控制技术是一种以等离子体气动激励为控制手段的主动流动控制技术. 为了进一步提高等离子体激励器可控机翼尺度, 以超临界机翼SC(2)-0714大迎角分离流为研究对象, 以对称布局介质阻挡放电等离子体为控制方式, 以测力、粒子图像测速仪为研究手段, 从等离子体激励器特性研究出发, 深入开展了机翼尺度效应对等离子体控制的影响研究, 提出了适用于分离流控制的能效比系数, 探索了分离流等离子体控制机理, 掌握了机翼尺度对分离流控制的影响规律. 结果表明: (1)随着机翼尺度的增大, 布置到机翼上的激励器电极长度会相应增加; 在本文的参数研究范围内, 激励器的平均消耗功率不会随电极长度的增加而线性增大; 当电极长度达到一定阈值时, 激励器的平均消耗功率趋于定值; (2)在固定雷诺数的情况下, 随着机翼尺度的增大, 等离子体的控制效果并未降低, 激励器能效比系数提高; (3)等离子体在主流区诱导的大尺度展向涡与在壁面附近产生的一系列拟序结构成为分离流控制的关键. 研究结果为实现真实飞机的等离子体分离流控制, 推动等离子体流动控制技术工程化应用提供了技术支撑.   相似文献   

15.
Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.  相似文献   

16.
Localized arc filament plasma actuators (LAFPAs) have been developed and used at The Gas Dynamics and Turbulence Laboratory for the purpose of controlling high-speed and high Reynolds number jets. The ability of LAFPAs for use in both subsonic and supersonic jets has been explored, and experiments to date have shown that these actuators have significant potential for mixing enhancement and noise control applications. While it has been established that the actuators manipulate instabilities of the jet, the exact nature of how the actuation couples to the flow is still unclear. All of the results previously reported have been based on a nozzle extension that has an azimuthal groove of 1 mm width and 0.5 mm depth along the inner surface approximately 1 mm upstream of nozzle extension exit. The ring groove was initially added to shield the plasma arcs from the high-momentum flow. However, the effect of the ring groove on the actuation mechanism is not known. To explore this effect, a new nozzle extension is designed, which relocates the actuators to the nozzle extension face and eliminates the ring groove. Schlieren images, particle image velocimetry and acoustic results of a Mach 0.9 jet of Reynolds number ~6.1 × 105 show similar trends and magnitudes with and without a ring groove. Thus, it is concluded that the ring groove does not play a primary role in the LAFPAs’ control mechanism. Furthermore, the effect of the duty cycle of the actuator input pulse on the LAFPAs’ control authority is investigated. The results show that the minimum duty cycle that provides complete plasma formation has the largest control over the jet.  相似文献   

17.
In this paper we describe the experimental analysis of a novel ion-exchange polymer metal composite (IPMC) actuator under large external voltage. The experimental analysis is supplemented with a coupled thermodynamic model, which includes mass transport across the thickness of the polymer actuator, chemical reactions at boundaries, and deformation as a function of the solvent (water) distribution. In this paper, the case of large electrode potentials (over 1.2 V) has been analyzed experimentally and theoretically. At these voltage levels, electrochemical reactions take place at both electrodes. These are used in the framework of overpotential theory to develop boundary conditions for the water transport in the bulk of polymer. The model is then simplified to a three-component system comprised of a fixed negatively charged polymeric matrix, protons, and free water molecules within the polymer matrix. Among these species, water molecules are considered to be the dominant species responsible for the deformation of the IPMC actuators. Experiments conducted at different initial water contents are described and discussed in the context of the proposed deformation mechanism. Comparison of numerical simulations with experimental data shows good agreement.  相似文献   

18.
Fluidic oscillators for flow control   总被引:1,自引:0,他引:1  
Fluidic oscillators are based on the bi-stable states of a jet (or a pair of jets) of fluid inside a specially designed flow chamber. These produce sweeping or pulsing jets of high exit velocity (~sonic exit velocities) extending the control authority achievable to high subsonic flows. Sweeping and pulsing jets with frequencies ranging from 1 to 20 kHz have been obtained with meso-scale (nozzle sizes in the range of 200 μm–1 mm) fluidic oscillators with very low mass flow rates of the order of 1 g/s. Such actuators have been recently used in laboratory scale experiments for separation control and cavity noise control with significant promise to be implemented in full-scale systems. In this paper, we provide a historical background of fluidic oscillators and methods to produce either sweeping or pulsing jets, their typical frequency, flow rate, and scaling characteristics. Some challenges in detailed characterization of such actuators through measurement will be presented. We will also discuss some of the system integration issues of translating this technology into practice. This is followed by a brief discussion of the need for further development of such actuators and the understanding of the mechanism by which flow control is achieved by these sweeping jets.  相似文献   

19.
Mean lift generation on cylinders induced with plasma actuators   总被引:1,自引:0,他引:1  
Bluff body flow control based on plasma actuators requires suitable strategies to attain the desired objectives. The strategy selection becomes more critical in situations where the free airstream velocity is much higher than the maximum velocity that can be produced by the flow control device. In this work, we report recent efforts to produce on a circular cylinder forces in direction transverse to the free flow. Free stream velocities considered in this work are as high as 45 m/s ((Re(O) 1 × 105), which result much higher values than the maximum velocities (about 5 m/s) usually induced by the kind of plasma actuator here considered (dielectric barrier type). Our strategy consisted on promoting asymmetries on boundary layer separation with a four electrode arrangement. In our experiments, we measured drag and lift forces and explored the effect of exciting the flow with steady and non-steady actuations. The device demonstrated authority to induce significant transverse forces and optimal frequencies resulted in all cases close to the vortex shedding frequency.  相似文献   

20.
Direct numerical simulations are used to probe the potential of plasma actuators to attenuate nonlinear steady crossflow vortices (CFVs). The investigated base flow mimics the three-dimensional boundary-layer flow of a swept wing. The plasma actuators are positioned at selected spanwise positions to weaken oncoming CFVs and thus the associated (secondary) instability. It is shown that both volume forcing against or in the direction of the crossflow (CF) can be effective, and a significant transition delay can be achieved. The spanwise position of the actuators should be such that the actuation-induced downdraft inhibits the CFV. The forcing in the direction of the CF does not reduce the mean CF, and an unfavourable spanwise position of the actuator may directly increase the strength of the CFV and eventually promote turbulence onset. The forcing against the CF never turned out to promote turbulence onset for all investigated positions, because of the favourable reduction of the mean CF. Adding then a second or third actuator downstream at appropriate spanwise positions can yield enhanced transition delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号