首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ordered quadruple of pairwise distinct points T = {z 1, z 2, z 3, z 4} ? C is called regular whenever z 2 and z 4 lie at the opposite sides of the line through z 1 and z 3. Consider Φ(T) = ∠z 1 z 2 z 3 + ∠z 1 z 4 z 3 (the angles are undirected) as some geometric characteristic of a regular tetrad. We prove the following theorem: For every fixed α ∈ (0, 2π) the Möbius property of a homeomorphism f: D → D* of domains in C is equivalent to the requirement that each regular tetrad T ? D with Φ(T) = α whose image fT is also a regular tetrad satisfies Φ(fT) = α. In 1994 Haruki and Rassias established this criterion for the Möbius property only in the class of univalent analytic functions f(z).  相似文献   

2.
In earlier papers, for “large” (but otherwise unspecified) subsets A, B of Z p and for h(x) ∈ Z p [x], Gyarmati studied the solvability of the equations a + b = h(x), resp. ab = h(x) with aA, bB, xZ p , and for large subsets A, B, C, D of Z p Sárközy showed the solvability of the equations a + b = cd, resp. ab + 1 = cd with aA, bB, cC, dD. In this series of papers equations of this type will be studied in finite fields. In particular, in Part I of the series we will prove the necessary character sum estimates of independent interest some of which generalize earlier results.  相似文献   

3.
We describe the center of the ring Diff h (n) of h-deformed differential operators of type A. We establish an isomorphism between certain localizations of Diff h (n) and the Weyl algebra W n , extended by n indeterminates.  相似文献   

4.
Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)such that 1-r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the exact asymptotics of P(sup_(t∈[0,T])X(t) x) is considered, as x →∞.  相似文献   

5.
We investigate the pair of matrix functional equations G(x)F(y) = G(xy) and G(x)G(y) = F(y/x), featuring the two independent scalar variables x and y and the two N×N matrices F(z) andG(z) (with N an arbitrary positive integer and the elements of these two matrices functions of the scalar variable z). We focus on the simplest class of solutions, i.e., on matrices all of whose elements are analytic functions of the independent variable. While in the scalar (N = 1) case this pair of functional equations only possess altogether trivial constant solutions, in the matrix (N > 1) case there are nontrivial solutions. These solutions satisfy the additional pair of functional equations F(x)G(y) = G(y/x) andF(x)F(y) = F(xy), and an endless hierarchy of other functional equations featuring more than two independent variables.  相似文献   

6.
For any bounded domain Ω in ?m, let B1(Ω) denote the Cowen-Douglas class of commuting m-tuples of bounded linear operators. For an m-tuple T in the Cowen-Douglas class B1(Ω), let NT (w) denote the restriction of T to the subspace \(\cap^m_{i,j=1}{\rm{ker}}(T_i-w_iI)(T_j-w_jI)\). This commuting m-tuple NT (w) of m + 1 dimensional operators induces a homomorphism \({\rho _{{N_T}\left( w \right)}}\) of the polynomial ring P[z1, · · ·, zm], namely, \({\rho _{{N_T}\left( w \right)}}\) (p) = p(NT (w)), pP[z1, · · ·, zm]. We study the contractivity and complete contractivity of the homomorphism \({\rho _{{N_T}\left( w \right)}}\). Starting from the homomorphism \({\rho _{{N_T}\left( w \right)}}\), we construct a natural class of homomorphisms \(\rho_{N^{(\lambda)}(w)}\), λ > 0, and relate the properties of \(\rho_{N^{(\lambda)}(w)}\) to those of \({\rho _{{N_T}\left( w \right)}}\). Explicit examples arising from the multiplication operators on the Bergman space of Ω are investigated in detail. Finally, it is shown that contractive properties of \({\rho _{{N_T}\left( w \right)}}\) are equivalent to an inequality for the curvature of the Cowen-Douglas bundle ET. However, we construct examples to show that the contractivity of the homomorphism ρT does not follow, even if \({\rho _{{N_T}\left( w \right)}}\) is contractive for all w in Ω.  相似文献   

7.
Let ξ(t), t ∈ [0, T],T > 0, be a Gaussian stationary process with expectation 0 and variance 1, and let η(t) and μ(t) be other sufficiently smooth random processes independent of ξ(t). In this paper, we obtain an asymptotic exact result for P(sup t∈[0,T](η(t)ξ(t) + μ(t)) > u) as u→∞.  相似文献   

8.
For a continuous curve L = {x: x = Z(t), t ∈ [a, b]} in R n , we study the number of zeros of the function l h (t) = 〈h, Z(t)〉, where hR n . We introduce the notion of multiple zeros for such functions and study the possibility of estimating the total multiplicity of such zeros under the assumption that the system {z 1(t), z 2(t), …, z n (t)} of coordinates of the function Z(t) is a Chebyshev system on [a, b].  相似文献   

9.
In the paper, a formula to calculate the probability that a random segment L(ω, u) in R n with a fixed direction u and length l lies entirely in the bounded convex body D ? R n (n ≥ 2) is obtained in terms of covariogram of the body D. For any dimension n ≥ 2, a relationship between the probability P(L(ω, u) ? D) and the orientation-dependent chord length distribution is also obtained. Using this formula, we obtain the explicit form of the probability P(L(ω, u) ? D) in the cases where D is an n-dimensional ball (n ≥ 2), or a regular triangle on the plane.  相似文献   

10.
Given α ∈ [0, 1], let h α (z):= z/(1 - αz), z ∈ D:= {z ∈ D: |z| < 1}. An analytic standardly normalized function f in D is called close-to-convex with respect to h α if there exists δ ∈ (-π/2, π/2) such that Re{eiδ zf′(z)/h α (z)} > 0, z ∈ D. For the class ? (h α ) of all close-to-convex functions with respect to h α , the Fekete-Szegö problem is studied.  相似文献   

11.
Let U be the quantum group and f be the Lusztig’s algebra associated with a symmetrizable generalized Cartan matrix. The algebra f can be viewed as the positive part of U. Lusztig introduced some symmetries T i on U for all iI. Since T i (f) is not contained in f, Lusztig considered two subalgebras i f and i f of f for any iI, where i f={xf | T i (x) ∈ f} and \({^{i}\mathbf {f}}=\{x\in \mathbf {f}\,\,|\,\,T^{-1}_{i}(x)\in \mathbf {f}\}\). The restriction of T i on i f is also denoted by \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\). The geometric realization of f and its canonical basis are introduced by Lusztig via some semisimple complexes on the variety consisting of representations of the corresponding quiver. When the generalized Cartan matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s symmetries in the sense of Lusztig. In this paper, we shall generalize this result and give geometric realizations of i f, i f and \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\) by using the language ’quiver with automorphism’ introduced by Lusztig.  相似文献   

12.
We obtain an integro-local limit theorem for the sum S(n) = ξ(1)+?+ξ(n) of independent identically distributed random variables with distribution whose right tail varies regularly; i.e., it has the form P(ξt) = t L(t) with β > 2 and some slowly varying function L(t). The theorem describes the asymptotic behavior on the whole positive half-axis of the probabilities P(S(n) ∈ [x, x + Δ)) as x → ∞ for a fixed Δ > 0; i.e., in the domain where the normal approximation applies, in the domain where S(n) is approximated by the distribution of its maximum term, as well as at the “junction” of these two domains.  相似文献   

13.
An adapted orthonormal frame (f1(ξ),f2(ξ),f3(ξ)) on a space curve r(ξ), ξ ∈ [ 0, 1 ] comprises the curve tangent \(\mathbf {f}_{1}(\xi ) =\mathbf {r}^{\prime }(\xi )/|\mathbf {r}^{\prime }(\xi )|\) and two unit vectors f2(ξ),f3(ξ) that span the normal plane. The variation of this frame is specified by its angular velocity Ω = Ω1f1 + Ω2f2 + Ω3f3, and the twist of the framed curve is the integral of the component Ω1 with respect to arc length. A minimal twist frame (MTF) has the least possible twist value, subject to prescribed initial and final orientations f2(0),f3(0) and f2(1),f3(1) of the normal–plane vectors. Employing the Euler–Rodrigues frame (ERF) — a rational adapted frame defined on spatial Pythagorean–hodograph curves — as an intermediary, an exact expression for an MTF with Ω1 = constant is derived. However, since this involves rather complicated transcendental terms, a construction of rational MTFs is proposed by the imposition of a rational rotation on the ERF normal–plane vectors. For spatial PH quintics, it is shown that rational MTFs compatible with the boundary conditions can be constructed, with only modest deviations of Ω1 about the mean value, by a rational quartic normal–plane rotation of the ERF. If necessary, subdivision methods can be invoked to ensure that the rational MTF is free of inflections, or to more accurately approximate a constant Ω1. The procedure is summarized by an algorithm outline, and illustrated by a representative selection of computed examples.  相似文献   

14.
Let T be an operator tuple in the Cowen–Douglas class B n (Ω) for Ω ? C m . The kernels Ker(T ? w) l , for w ∈ Ω, l = 1, 2, ···, define Hermitian vector bundles E T l over Ω. We prove certain negativity of the curvature of E T l . We also study the relation between certain curvature inequality and the contractive property of T when Ω is a planar domain.  相似文献   

15.
We consider a random process in a spatial-temporal homogeneous Gaussian field V (q , t) with the mean E V = 0 and the correlation function W(|q ? q′|, |t ? t′|) ≡ E[V (q, t)V (q′, t′)], where \( \bold{q} \in {\mathbb{R}^d} \), \( t \in {\mathbb{R}^{+} } \), and d is the dimension of the Euclidean space \( {\mathbb{R}^d} \). For a “density” G(r, t) of the familiar model of a physical system averaged over all realizations of the random field V, we establish an integral equation that has the form of the Dyson equation. The invariance of the equation under the continuous renormalization group allows using the renormalization group method to find an asymptotic expression for G(r, t) as r → ∞ and t → ∞.  相似文献   

16.
The invisibility graph I(X) of a set X ? R d is a (possibly infinite) graph whose vertices are the points of X and two vertices are connected by an edge if and only if the straight-line segment connecting the two corresponding points is not fully contained in X. We consider the following three parameters of a set X: the clique number ω(I(X)), the chromatic number χ(I(X)) and the convexity number γ(X), which is the minimum number of convex subsets of X that cover X.We settle a conjecture of Matou?ek and Valtr claiming that for every planar set X, γ(X) can be bounded in terms of χ(I(X)). As a part of the proof we show that a disc with n one-point holes near its boundary has χ(I(X)) ≥ log log(n) but ω(I(X)) = 3.We also find sets X in R5 with χ(X) = 2, but γ(X) arbitrarily large.  相似文献   

17.
Any (measurable) function K from Rn to R defines an operator K acting on random variables X by K(X) = K(X1,..., Xn), where the Xj are independent copies of X. The main result of this paper concerns continuous selectors H, continuous functions defined in Rn and such that H(x1, x2,..., xn) ∈ {x1, x2,..., xn}. For each such continuous selector H (except for projections onto a single coordinate) there is a unique point ωH in the interval (0, 1) so that, for any random variable X, the iterates H(N) acting on X converge in distribution as N → ∞ to the ωH-quantile of X.  相似文献   

18.
For the first-order ordinary delay differential equation
$$u'(t) + p(t)u(r(t)) = 0,$$
where pL loc(?+; ?+), τC(?+; ?+), τ(t) ≤ t for t ∈ ?+, limt→+∞ τ(t) = +∞, and ?+:= [0, ∞), we obtain new criteria for the existence of sign-definite and oscillating solutions, thus generalizing some earlier-known results.
  相似文献   

19.
Two-sided pointwise estimates are established for polynomials that are orthogonal on the circle |z| = 1 with respect to the weight ?(τ): = h(τ)|sin(τ/2)|?1 g(|sin(τ/2)|) (τ ∈ ?), where g(t) is a concave modulus of continuity slowly changing at zero such that t ?1 g(t) ∈ L 1[0, 1] and h(τ) is a positive function from the class C 2π with a modulus of continuity satisfying the integral Dini condition. The obtained estimates are applied to find the order of the distance from the point t = 1 to the greatest zero of a polynomial orthogonal on the segment [?1, 1].  相似文献   

20.
Rapidly oscillating integrals of the form
$$I(r,h) = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{e^{\frac{i}{h}F(r\cos \phi )}}G(r\cos \phi )d\phi ,} $$
where F(r) is a real-valued function with nonvanishing derivative, arise when constructing asymptotic solutions of problems with nonstandard characteristics such as the Cauchy problem with spatially localized initial data for the wave equation with velocity degenerating on the boundary of the domain; this problem describes the run-up of tsunami waves on a shallow beach in the linear approximation. The computation of the asymptotics of this integral as h → 0 encounters difficulties owing to the fact that the stationary points of the phase function F(r cos ?) become degenerate for r = 0. For this integral, we construct an asymptotics uniform with respect to r in terms of the Bessel functions J 0(z) and J 1(z) of the first kind.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号