首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
Using the solid-phase pyrolysis and chemical vapor deposition of nickel-phthalocyanine, we have fabricated ferromagnetic Ni nanoparticles in carbon matrices. The composition, structure, morphology, and magnetic properties of samples were investigated by means of scanning electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction technique, and ferromagnetic resonance. It is shown that the sizes of nanoparticles can be varied from ∼10 nm to ∼500 nm depending on the temperature and time of pyrolysis. The used method allows us to synthesize metal nanoparticles in different carbon matrices: in amorphous carbon plates, in graphitic capsules, and in carbon nanotubes.  相似文献   

2.
Using solid-phase pyrolysis of Zn-phthalocyanine (ZnC32H16N8), we have prepared zinc and zinc cyanide nanoparticles in carbon matrices with a zinc concentration of 3 at %. The structure and composition of samples were investigated by the methods of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. It is shown that at low pyrolysis temperature (700°C) only the Zn nanoparticles are formed, whereas at higher temperature (900°C) a certain amount of Zn(CN)2 nanoparticles are also synthesized. The mean diameter of nanoparticles is about 150 nm, and their size distribution has a logarithmically normal shape.  相似文献   

3.
In this letter, poly(vinylidene difluoride) (PVDF)/(Y0.97Eu0.03)2O3 rare-earth nanocomposites were prepared by a simple co-precipitation method, and their morphology, structure, and optical properties were investigated. The scanning electron microscope (SEM) images showed that the (Y0.97Eu0.03)2O3 rare-earth nanoparticles formed 50 nm - 2μm aggregates in PVDF matrices. X-ray diffraction (XRD) curves indicated the incorporation and structure preserving of (Y0.97Eu0.03)2O3 nanoparticles in PVDF matrices. Photoluminescence (PL) spectra of the nanocomposite showed a characteristic red light emission at 612 nm, which was attributed to the intrinsic emission of (Y0.97Eu0.03)2O3 nanoparticles. Optical band gap (Eg) of the nanocomposite exhibited a decreasing trend with the increase of (Y0.97Eu0.03)2O3 content in PVDF matrices within the experimental dosage range.  相似文献   

4.
采用乙酰丙酮铜为原料, 通过化学气相沉积大批量制备出Cu/C核/壳纳米颗粒和纳米线. 研究结果表明, 通过控制沉积温度可对Cu/C核/壳纳米材料的形貌和结构进行很好的控制. 比如, 沉积温度为400 ℃时可获得直径约200 nm的Cu/C核/壳纳米线, 沉积温度为450 ℃ 时可获得直径约200 nm的Cu/C核/壳纳米颗粒和纳米棒的混合产物, 沉积温度为600 ℃时可获得直径约22 nm的Cu/C核/壳纳米颗粒. 获得的Cu/C核/壳纳米结构是由一个新颖的凝聚机理形成的, 而这种机理不同于著名的溶解-析出机理. 紫外-可见光谱和荧光光谱分析结果表明: Cu/C核/壳纳米线和纳米颗粒均在225 nm处出现Cu的吸收峰, 同时在620 和616 nm处分别出现了纳米线和纳米颗粒的表面等离子共振吸收峰. Cu/C核/壳纳米线在312 和348 nm处、 Cu/C核/壳纳米颗粒在304 和345 nm处出现荧光发射谱峰. 关键词: Cu/C核/壳结构 纳米线 纳米颗粒 光学性能  相似文献   

5.
Silver-containing nanocomposites were prepared by impregnating Vycor glass (a pore diameter of 4 nm) and synthesized opal matrices (an interstitial void size of 40 nm) with cyclooctadiene complex of silver hexafluoroacetylacetonate (Ag(hfac)COD), a silver precursor, dissolved in supercritical carbon dioxide and were examined by optical absorption spectroscopy, atomic force microscopy, and electron spin-resonance spectroscopy. It was demonstrated that the absorption spectra of Vycor glass and opal matrices impregnated with Ag(hfac)COD molecules and subjected to thermal treatment in air at temperatures above 50°C exhibit plasmon resonances characteristic of Ag nanoparticles at 420–430 nm. The peculiarities of the plasmon resonance band for both types of samples were attributed to the morphology of the pore space in which silver particles are formed. Paramagnetic Cu(hfac)2 molecules (copper hexafluoroacetylacetonate) were used as a spectroscopic probe for estimating the distribution of the precursor in the pores of Vycor glass and opal matrices during supercritical fluid impregnation.  相似文献   

6.
Carbon-encapsulated copper nanoparticles were synthesized by a modified arc plasma method using methane as carbon source. The particles were characterized in detail by transmission electron microscope, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetric and differential scanning calorimetry. The encapsulated copper nanoparticles were about 30 nm in diameter with 3–5 nm graphitic carbon shells. The outside graphitic carbon layers effectively prevented unwanted oxidation of the copper inside. The effect of the ratio of He/CH4 on the morphologies and the formation of the carbon shell were investigated.  相似文献   

7.
A novel type of gold nanoparticle/multi-walled carbon nanotube (AuNP/MWCNT) composite electrodes is presented. The electrochemical reduction of oxygen on these hybrid electrodes was studied using the rotating disk electrode (RDE) method. The AuNP/MWCNT nanocomposites were prepared by sputter deposition of gold in argon atmosphere on MWCNTs followed by heat-treatment of the catalyst at different temperatures. High-resolution scanning electron microscopy (HR-SEM), glancing incidence angle X-ray powder diffraction (GIXRD) and small-angle X-ray scattering (SAXS) techniques were employed to characterise the surface structure and morphology of catalyst materials. Au nanoparticles with diameter around 20 nm were dispersed at the tips and on the sidewalls of nanotubes. Electrochemical measurements were performed to demonstrate the electrocatalytic properties of the composite catalysts towards O2 reduction in acid media. The successful preparation of AuNP/MWCNT nanocomposites by magnetron sputtering opens up the possibility of making an efficient dispersion of nanoparticles for electrocatalyst design.  相似文献   

8.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   

9.
Small-angle neutron scattering is used to study the structure of carbon matrices—the pyrolysis products of diphthalocyanines with embedded metal atoms (Y, La, and Ce), synthesized at annealing temperatures of 800–1700°C. It is shown that the structure of the porous matrix on the scale of ~100–102 nm is characterized by a level of small pores (3–10 nm in radius) and the next level of the structure is associated with the formation of their aggregates (above 100 nm in size). The quantity and size of the scattering objects increases sharply at annealing temperatures above 1000°C. The results are consistent with X-ray diffraction data.  相似文献   

10.
Nanocomposites based on iron and nickel particles encapsulated into carbon (Fe@C and Ni@C), with an average size of the metal core in the range from 5 to 20 nm and a carbon shell thickness of approximately 2 nm, have been prepared by the gas-phase synthesis method in a mixture of argon and butane. It has been found using X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy that iron nanocomposites prepared in butane, apart from the carbon shell, contain the following phases: iron carbide (cementite), α-Fe, and γ-Fe. The phase composition of the Fe@C nanocomposite correlates with the magnetization of approximately 100 emu/g at room temperature. The replacement of butane by methane as a carbon source leads to another state of nanoparticles: no carbon coating is formed, and upon subsequent contact with air, the Fe3O4 oxide shell is formed on the surface of nanoparticles. Nickel-based nanocomposites prepared in butane, apart from pure nickel in the metal core, contain the supersaturated metastable solid solution Ni(C) and carbon coating. The Ni(C) solid solution can decompose both during the synthesis and upon the subsequent annealing. The completeness and degree of decomposition depend on the synthesis regime and the size of nickel nanoparticles: the smaller is the size of nanoparticles, the higher is the degree of decomposition into pure nickel and carbon. The magnetization of the Ni@C nanocomposites is determined by several contributions, for example, the contribution of the magnetic solid solution Ni(C) and the contribution of the nonmagnetic carbon coating; moreover, some contribution to the magnetization can be caused by the superparamagnetic behavior of nanoparticles.  相似文献   

11.
Yingqiong Yong  Li-Zhen Fan 《Ionics》2013,19(11):1545-1549
Silicon/carbon nanocomposites are prepared by dispersing nano-sized silicon in mesophase pitch and a subsequent pyrolysis process. In the nanocomposites, silicon nanoparticles are homogeneously distributed in the carbon networks derived from the mesophase pitch. The silicon/carbon nanocomposite delivers a high reversible capacity of 841 mAh g?1 at the current density of 100 mA g?1 at the first cycle, high capacity retention of 98 % over 30 cycles, and good rate performance. The superior electrochemical performance of nanocomposite is attributed to the carbon networks with turbostratic structure, which enhance the conductivity and alleviate the volume change of silicon.  相似文献   

12.
The structure of polymer nanocomposites containing CuS clusters is studied by atom force (AFM), scanning (SEM), and transmission (TEM) electron microscopy, and by narrow-angle X-ray scattering (SAXS). The results point to the existence of spherical nanoparticles of 3?C50 nm in diameter and larger agglomerates of sizes 1?C5 ??m in the studied nanocomposites (NCs). The morphology of NCs depends on the conditions of synthesis.  相似文献   

13.
Graphene encapsulated metallic copper nanoparticle composite was prepared by reduction of stage-2 CuCl2-graphite intercalation compounds, using both metallic potassium and potassium borohydride/ethylenediamine matrix as reducing reagents. X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy were employed to characterize the reduction products. The results show that the copper nanoparticles in the graphite matrix are 30 to 70 nm in size. The copper concentration in the reduction product is experimental-condition dependant. A severe structure disorder of graphitic carbon occurs during the reduction procedure. The formation procedure of copper particles in the graphene sheets is discussed briefly.  相似文献   

14.
The structure of carbon matrices prepared from diphtalocyanines using pyrolysis to encapsulate metal atoms (Y, Sm, U) inside small pores is studied by small-angle neutron scattering. It is shown that the structure of the porous matrix at a scale of 100–102 nm is characterized by two levels — small pores with the characteristic radii of 3–7 nm aggregated into entities with sizes of 40–100 nm and higher. The scattering data fit the values of the sample density and the total volume of pores in the matrices.  相似文献   

15.
Here we describe a single chemical route to obtain highly dispersed nanometric Ni particles embedded in titania/carbon matrixes (amorphous and crystalline). The synthesis of these nanocomposites is based on a polymeric precursor method. The metallic Ni nanoparticles (1-15 nm) were obtained in a single process. We also present the results of photocatalytic experiments involving a series of nanocrystalline composites based on TiO2/carbon with embedded Ni nanoparticles as nanocatalysts for rhodamine 6G degradation in aqueous solution and investigate the effects of the structure and properties of the nanocomposites on their photocatalytic applications. The effect of the different annealing treatments on the formation of TiO2 nanophases (anatase and/or rutile), the size of Ni particles and the role of the residual carbon phase on the final solid are also described.  相似文献   

16.
Carbon–silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper–chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.  相似文献   

17.
The structural state of carbon in nanocomposites that are based on metals (Fe, Ni, Co, and Ag) encapsulated in carbon and produced by the gas-phase synthesis has been investigated using Raman spectroscopy and high-resolution transmission electron microscopy. The average diameter of particles of the initial nanocomposites after the gas-phase synthesis, including the carbon shell, is less than 15 nm and can vary as a function of the conditions and regimes used for their preparation. The shell of the initial nanocomposites, irrespectively of the metal core type, consists of carbon fragments in the form of curved layers with sizes of less than 10 nm in the lateral direction. In the initial nanocomposites, there is no periodicity in the packing of carbon layers in the radial and lateral directions. The structure of the coating is assumed to be similar to the glassy carbon structure characterized by a curvature of carbon layers in different directions, which requires that, in addition to conventional hexagonal cells, the layers should contain pentagonal and heptagonal cells. Heat treatment of the initial nanocomposites Fe@C and Ni@C in butane (700°C, 60 min) not only significantly increases the thickness of the carbon coating but also increases the degree of ordering of curved carbon fragments in the lateral and radial directions. In the composites with Fe, Ni, and Co, along with this form of carbon, semiconducting nanotubes with a diameter of 1.3–1.5 nm are also formed. The composites with silver nanoparticles exhibit the effect of time-fluctuating giant enhancement of the Raman scattering intensity.  相似文献   

18.
A method based on doping of pure nickel phthalocyanine (NiPc) with a polycrystalline potassium powder at relatively low temperatures (300°C) has been proposed for the synthesis of a magnetic nanocomposite containing nickel nanoparticles stabilized in the NiPc matrix. The structural analysis of the synthesized nanoparticles and changes in the NiPc initial matrix has been performed using X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. It has been found that, at the doping level used in this study, the synthesized samples of the KxNiPc nanocomposites contain from 9 to 18% Ni in the form of metallic magnetic nanoparticles with an average size of more than 40 nm. It has been shown that the formation of nanoparticles is accompanied by a relative misorientation of persistent NiPc molecules with the unchanged structure of each of these molecules. The stabilization of nickel nanoparticles by the phthalocyanine matrix leads to the fact that the synthesized nanocomposites acquire time-conserving magnetic properties.  相似文献   

19.
A simple and effective method for in situ synthesis of α-Fe nanoparticle/ordered mesoporous silica (OMS) composites is reported. Evaporation induced self-assembly (EISA) and carbothermal reduction (CR) are strategically combined by using amphiphilic triblock copolymer P123 as not only a template and but also a precursor of carbon material. P123 plays dual roles in assembly of mesostructure and reduction of ferric species. Thermogravimetric analysis-mass spectrometer was used to investigate the pyrolysis process of the wet gels. The synthesized composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N2 adsorption. The results showed that the composites possess ordered hexagonal mesoporous structure and the α-Fe nanoparticles with about 16 nm were well dispersed in mesoporous matrix. The carbon material resulting from P123 can reduce ferric species to α-Fe nanoparticles at 800 °C. Moreover, the formation mechanism for Fe nanoparticles in OMS matrix is proposed.  相似文献   

20.
One-domain Ni@C nanoparticles encapsulated in carbon coating have been investigated depending on the size and concentration of Ni in carbon. The nanoparticles of nickel were prepared with the average diameters changing in a broad range of 4–45 nm, and the concentration of Ni in C varies in 2–12 wt%. To prepare the Ni@C nanocomposites the solid solutions of nickel phthalocyanine–metal-free phthalocyanine (NiPc) x (H2Pc)1–x , 0 ≤ x ≤ 1 were synthesized and the solidphase pyrolysis of these compounds was performed. In the case of ultradispersive Ni nanoparticles (the interval of quantum dots is 1–10 nm), a considerable shift of the resonance field and broadening of resonance absorption field were revealed in the spectra of FMR at room temperature. The data were interpreted taking into account the essential contribution of the surface magnetic anisotropy, the magnetic field of which far exceeds the magnetic field of volume anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号