首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

2.
Polymeric nanowires of poly(3,4‐ethylenedioxythiophene) (PEDOT) are electrochemically synthesized using porous anodic alumina oxide (AAO) membranes as templates. Four‐point resistivity measurements on more than 100 PEDOT nanowires with different diameters (50–250 nm) reveal a statistically significant size‐dependent phenomenon in which the nanowires with a smaller diameter exhibit higher conductivity. Structural characterization with Raman spectroscopy and doping level estimation with energy‐dispersive X‐ray spectrometry and X‐ray photoelectron spectroscopy indicate that the observed conductivity enhancement can be attributed to improved carrier mobility in PEDOT nanowires having an elongated conjugation structure because of the effect of the AAO template. From the estimated doping levels (~5%) and conductivity data (~100 S/cm), it is found that the carrier mobility reach 2.0 cm2/V s for the nanowire with the smallest diameter, as compared with 4.0 × 10?4 cm2/V s for a bulk PEDOT film. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

3.
The application of transistors based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS) in chemical and biological sensing is reviewed. These devices offer enormous potential for facile processing of small, portable, and inexpensive sensors ideally suited for point-of-care analysis. They can be used to detect a wide range of analytes for a variety of possible applications in fields such as health care (medical diagnostics), environmental monitoring (airborne chemicals, water contamination, etc.), and food industry (smart packaging). Organic transistors are excellent candidates to act as transducers because they have the ability to translate chemical and biological signals into electronic signals with high sensitivity. Furthermore, fuctionalization of PEDOT:PSS films with a chemical or biological receptor can lead to high specificity. The advantages of using PEDOT:PSS transistors are described, and applications are presented for sensing analytes in both gaseous and aqueous environments.  相似文献   

4.
Yu Han 《Soft Materials》2018,16(1):31-36
As a representing conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely employed in organic electronics. However, the electrical conductivity for pristine PEDOT:PSS is only between 0.1 and 0.5 S/cm. In order to enhance the conductivity, the silver nanowires (Ag NWs) were synthesized to dope PEDOT:PSS. It was found the electrical conductivity of PEDOT:PSS was improved to about 200 S/cm with Ag NWs. When double-wall carbon nanotube (DWCNT) was employed together with Ag NWs, the electrical conductivity was further improved to over 2800 S/cm. We proposed the synergistic working model between Ag NWs and CNTs for such enhancement. In this work, UV-vis-NIR spectra and SEM images were also employed to investigate the mechanism of electrical conductivity enhancement.  相似文献   

5.
Stretchable conductive hydrogels have received significant attention due to their possibility of being utilized in wearable electronics and healthcare devices. In this work, a semi-interpenetrating polymer network (SIPN) strategy was employed to fabricate a set of flexible, stretchable and conductive composite hydrogels composed of polyvinyl alcohol (PVA) in the presence of glutaraldehyde as the crosslinker, HCl as the catalyst and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the conductive medium. The results from FTIR, Raman, SEM and TGA indicate that a chemical crosslinking network and interactions of PVA and PEDOT:PSS exist in the SIPN hydrogels. The swelling ratio of hydrogels decreased with increasing content of PEDOT:PSS. Due to the chemical crosslinking network and interactions of PVA and PEDOT:PSS, PVA networks semi-interpenetrated with PEDOT:PSS exhibited excellent tensile and compression properties. The tensile strength and elongation at breakage of the composite hydrogels with 0.14 wt% PEDOT:PSS were 70 KPa and 239%, respectively. The compression stress of the composite hydrogels with 0.14 wt% PEDOT:PSS at a strain of 50% was about 216 KPa. The electrical conductivity of the hydrogels increased with increasing PEDOT:PSS content. The flexible, stretchable and conductive properties endow the composite hydrogel sensor with a superior gauge factor of up to 4.4 (strain: 100%). Coupling the strain sensing capability to the flexibility, good mechanical properties and high electrical conductivity, we consider that the designed PVA/PEDOT:PSS composite hydrogels have promising applications in wearable devices, such as flexible electronic skin and sensitive strain sensors.  相似文献   

6.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   

7.
Cui  Huiqin  Song  Wei  Fanady  Billy  Peng  Ruixiang  Zhang  Jianfeng  Huang  Jiaming  Ge  Ziyi 《中国科学:化学(英文版)》2019,62(4):500-505
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid)(PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid(DMSO/MSA) treated PEDOT:PSS electrode,bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency(PCE) of 10.23% under 100 mW cm~(-2) illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.  相似文献   

8.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

9.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as transparent electrodes for organic light‐emitting diodes (OLEDs) are doped with a new solvent 1,3‐dimethyl‐2‐imidazolidinone (DMI) and are optimized using solvent post‐treatment. The DMI doped PEDOT:PSS films show significantly enhanced conductivities up to 812.1 S cm−1. The sheet resistance of the PEDOT:PSS films doped with DMI is further reduced by various solvent post‐treatment. The effect of solvent post‐treatment on DMI doped PEDOT:PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT:PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT:PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT:PSS films with the new solvent of DMI can be a promising transparent electrode for low‐cost, efficient ITO‐free white OLEDs.

  相似文献   


10.
Newly synthesised fluorescent chemosensor ADDTU contains the thiourea receptor connected to the acridinedione (ADD) fluorophore via a covalent bond, giving rise to a fluorophore-receptor motif. In this fluorescent chemosensor, the anion recognition takes place at the receptor site which result in the concomitant changes in the photophysical properties of a ADD fluorophore by modulation of photoinduced electron transfer (PET) process. The binding ability of these sensor with the anions F(-), Cl(-), Br(-), I(-), HSO(4)(-), ClO(4)(-), AcO(-), H(2)PO(4)(-) and BF(4)(-) (as their tetrabutylammounium salts) in acetonitrile were investigated using UV-vis, steady state and time-resolved emission techniques. ADDTU system allows for the selective fluorescent sensing of AcO(-), H(2)PO(4)(-) and F(-) over other anions in acetonitrile.  相似文献   

11.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

12.
We report the synthesis, structural characterization, and electrical transport properties of free-standing single-crystal CoSi nanowires synthesized via a single-source precursor route. Nanowires with diameters of 10-150 nm and lengths of greater than 10 mum were synthesized through the chemical vapor deposition of Co(SiCl(3))(CO)(4) onto silicon substrates that were covered with 1-2 nm thick SiO(2). Transmission electron microscopy confirms the single-crystal structure of the cubic CoSi. X-ray absorption and emission spectroscopy confirm the chemical identity and show the expected metallic nature of CoSi, which is further verified by room-temperature and low-temperature electrical transport measurements of nanowire devices. The average resistivity of CoSi nanowires is found to be about 510 muOmega cm. Our general and rational nanowire synthesis approach will lead to a broad class of silicide nanowires, including those metallic materials that serve as high-quality building blocks for nanoelectronics and magnetic semiconducting Fe(1-x)Co(x)Si suitable for silicon-based spintronics.  相似文献   

13.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
CQD/PEDOT:PSS composites were prepared via the hydrothermal method from glucose carbon quantum dots (CQDs) and an aqueous solution of PEDOT:PSS conducting polymer and their electrical and optical properties were investigated. The morphology and structure of these samples were investigated by AFM, SEM, EDX, and EBSD. It was found that the CQDs and CQD/PEDOT:PSS composites had a globular structure with globule sizes of ~50–300 nm depending on the concentration of PEDOT:PSS in these composites. The temperature dependence of the resistivity was obtained for the CQD/PEDOT:PSS (3%, 5%, 50%) composites, which had a weak activation character. The charge transport mechanism was discussed. The dependence of the resistivity on the storage time of the CQD/PEDOT:PSS (3%, 5%, 50%) composites and pure PEDOT:PSS was obtained. It was noted that mixing CQDs with PEDOT:PSS allowed us to obtain better electrical and optical properties than pure CQDs. CQD/PEDOT:PSS (3%, 5%, 50%) composites are more conductive composites than pure CQDs, and the absorbance spectra of CQD/PEDOT:PSS composites are a synergistic effect of interaction between CQDs and PEDOT:PSS. We also note the better stability of the CQD/PEDOT:PSS (50%) composite than the pure PEDOT:PSS film. CQD/PEDOT:PSS (50%) composite is promising for use as stable hole transport layers in devices of flexible organic electronics.  相似文献   

15.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

16.
The interaction between poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and cellulosic fibers was characterized in order to obtain further understanding of the conductivity properties of the modified cellulosic fiber material. Microcrystalline cellulose (MCC) was used as a model surface to study the adsorption behavior at various pH and salt concentrations, while samples of low-conductivity paper, normally used for the production of electrical insulation papers, were dipped into PEDOT:PSS dispersion and air-dried for X-ray photoelectron spectroscopy (XPS) studies. The results showed a strong interaction between the MCC and PEDOT:PSS, which implied a broad molecular distribution of the conducting polymer. With increasing pH, less amount of the conducting polymer was adsorbed whereas the amount adsorbed passed through a maximum value with varying salt concentration. Zeta potential measurement and polyelectrolyte titration were used to determine the surface charge of both suspended MCC particles and dispersed PEDOT:PSS at various pH levels and salt concentrations. Dip-coated paper samples exhibited two peaks in the S(2p) XPS spectra at 168–169 and 164–165 eV which correspond to the sulfur signals of sulfonate (in PSS) and in thiophene (in PEDOT), respectively. It was found that the PEDOT:PSS with a ratio of 1:2.5 was adsorbed more in the base paper than that with a ratio of 1:6. The PEDOT:PSS ratio on the surface of the cellulosic material was higher than that in the bulk liquid for all samples. The results indicated that PEDOT was preferentially adsorbed rather than PSS. The degree of washing of the conducting polymer did not significantly affect the PEDOT enhancement on the surface.  相似文献   

17.
Highly conductive microfibers made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) were fabricated by wet-spinning and subsequent dip-treatment in ethylene glycol. The electrical conductivity of the PEDOT/PSS microfibers with a diameter of ca. 5 μm was significantly increased from 74 S cm−1 to 467 S cm−1 by the dip-treatment in 3 min. The result was explained by removal of insulating PSS from the surface of the PEDOT/PSS grains and crystallization of PEDOT, which led to the formation of large numbers of higher conductive grains that enhanced the transport of charge carriers in the microfiber. The mechanical properties of the microfibers were also improved by the dip-treatment where Young’s modulus and tensile strength increased from 3.2 GPa and 94 MPa to 4.0 GPa and 130 MPa, respectively.  相似文献   

18.
We report the electrochemical deposition of poly(pyrrolepropylic acid) nanowires, their covalent modification with antibodies and their conversion into potential functional sensor devices. The nanowires and the devices were characterised by optical microscopy, fluorescence microscopy, electron microscopy and electrical measurements. Fluorescence images, current–voltage (IV) profiles and real-time sensing measurements demonstrated a rapid and highly sensitive and selective detection of human serum albumin (HSA), a substance that has been used to diagnose incipient renal disease. The detection is based on the selective binding of HSA onto anti-HSA that is covalently attached to the nanowires. The binding changes the electrical properties of the nanowires thus enabling the real-time detection. Whilst the utility of the research was demonstrated for protein binding/detection, the technology could easily be designed for the detection of other analytes by the modification of polymer nanowires with other analyte-specific molecules/biomolecules. Therefore, the technology has the potential to positively impact broad analytical applications in the biomedical, environmental and other sectors. Figure Real-time dynamic current response on sequential exposure of buffer, bovine serum albumin (BSA) and human serum albumin (HSA) onto anti-HSA modified poly (pyrrolepropylic acid) nanowires. Fluorescence images of poly(pyrrolepropylic acid) nanowire (top right) and polypyrrole nanowire control (bottom right) after sequential treatment with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), anti HSA and fluorophore-labeled HSA.  相似文献   

19.
Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20–60 S cm−1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm−1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.  相似文献   

20.
Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4‐ethylenedioxythiophene) (PEDOT) or poly(3,4‐ethylenedioxythiophene‐co‐3‐thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self‐seeded metal–organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X‐ray diffraction analysis indicates an edge‐on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号