首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We include the phonon modes originating from the three layers of Cu(100)/Cu(111) surface atoms on the dynamics of molecular [H(2)(v,j)/D(2)(v,j)] degrees of freedom (DOFs) through a mean field approach, where the surface temperature is incorporated into the effective Hamiltonian (potential) either by considering Boltzmann probability (BP) or by including the Bose-Einstein probability (BEP) factor for the initial state distribution of the surface modes. The formulation of effective potential has been carried out by invoking the expression of transition probabilities for phonon modes known from the "stochastic" treatment of linearly forced harmonic oscillator (LFHO). We perform four-dimensional (4D?2D) as well as six-dimensional (6D) quantum dynamics on a parametrically time and temperature-dependent effective Hamiltonian to calculate elastic/inelastic scattering cross-section of the scattered molecule for the H(2)(v,j)-Cu(100) system, and dissociative chemisorption-physisorption for both H(2)(v,j)-Cu(100) and D(2)(v,j)-Cu(111) systems. Calculated sticking probabilities by either 4D?2D or 6D quantum dynamics on an effective potential constructed by using BP factor for the initial state distribution of the phonon modes could not show any surface temperature dependence. In the BEP case, (a) both 4D?2D and 6D quantum dynamics demonstrate that the phonon modes of the Cu(100) surface affect the state-to-state transition probabilities of the scattered H(2) molecule substantially, and (b) the sticking probabilities due to the collision of H(2) on Cu(100) and D(2) on Cu(111) surfaces show noticeable and substantial change, respectively, as function of surface temperature only when the quantum dynamics of all six molecular DOFs are treated in a fully correlated manner (6D).  相似文献   

2.
We perform four-dimensional (4D?2D) as well as six-dimensional (6D) quantum dynamics on a parametrically time- and temperature-dependent effective Hamiltonian for D(2)(v, j)-Cu(111) system, where such effective potential has been derived through a mean-field approach between molecular degrees of freedom and surface modes with Bose-Einstein probability factor for their initial state distribution. We present the convergence of the theoretically calculated sticking probabilities employing 4D?2D quantum dynamics with increasing number of surface atoms as well as layers for rigid surface and the surface at a particular temperature, where the temperature-dependent sticking probabilities appear exclusively dictated by those surface modes directed along the Z-axis. The sticking and state-to-state transition probabilities obtained from 6D quantum dynamics are shown as a function of initial kinetic energy of the diatom at different surface temperature. Theoretically calculated sticking probabilities display the similar trend with the experimentally measured one.  相似文献   

3.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

4.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

5.
We have studied survival and rotational excitation probabilities of H(2)(v(i) = 1, J(i) = 1) and D(2)(v(i) = 1, J(i) = 2) upon scattering from Cu(111) using six-dimensional (6D) adiabatic (quantum and quasi-classical) and non-adiabatic (quasi-classical) dynamics. Non-adiabatic dynamics, based on a friction model, has been used to analyze the role of electron-hole pair excitations. Comparison between adiabatic and non-adiabatic calculations reveals a smaller influence of non-adiabatic effects on the energy dependence of the vibrational deexcitation mechanism than previously suggested by low-dimensional dynamics calculations. Specifically, we show that 6D adiabatic dynamics can account for the increase of vibrational deexcitation as a function of the incidence energy, as well as for the isotope effect observed experimentally in the energy dependence for H(2)(D(2))/Cu(100). Furthermore, a detailed analysis, based on classical trajectories, reveals that in trajectories leading to vibrational deexcitation, the minimum classical turning point is close to the top site, reflecting the multidimensionally of this mechanism. On this site, the reaction path curvature favors vibrational inelastic scattering. Finally, we show that the probability for a molecule to get close to the top site is higher for H(2) than for D(2), which explains the isotope effect found experimentally.  相似文献   

6.
Results from state resolved experiments are presented for the interaction of D2(v=1,J=2) with Cu(100) and Pd(111). The reflected molecules were probed using quantum state specific spectroscopy. For D2 scattered from Cu(100) the vibrational survival probability and some transition inelastic probabilities were measured for incident energies from 70-200 meV. The survival probability was found to be larger then that found previously for H2(v=1) scattered from the same surface; these differences are discussed in terms of the lower zero point energy and smaller vibrational energy spacings of D2. D2 translational energy exchange was studied for several different scattering channels and interpreted using simple classical calculations. The survival probability was also measured for D2(v=1) scattered from Pd(111) at one incident energy. Pd is reactive for D2 dissociation and this survival probability was measured to be small and also to be much smaller than that for H2(v=1) under similar conditions. Vibrational relaxation channels were studied for D2 scattering from both Cu(100) and Pd(111). The vibrational relaxation probability on both surfaces was also found to be smaller than that measured for comparable channels for H2. The smaller survival probability and vibrational relaxation probability for D2 on Pd(111) cannot be easily accounted for by the difference in zero point energy and vibrational energy spacings.  相似文献   

7.
A detailed three-dimensional time-dependent quantum dynamical study of the He+H(2) (+)(v=0-3,j=0)-->HeH(+)+H reaction is reported for different vibrational v states of H(2) (+) in its ground rotational (j=0) state over a range of translational E(trans) energies on an accurate ab initio potential energy surface published by Palmieri et al. Plots of reaction probability as a function of total energy E reveal a large number of oscillations indicating the presence of a number of reactive scattering resonances. When averaged over total angular momentum J, some of the oscillations survive, indicating that they may be amenable to experimental observation. A comparison of our present results with our earlier results on the McLaughlin-Thompson-Joseph-Sathyamurthy surface and the experimental results from different research groups reveal a good deal of agreement as well as some discrepancies between theory and experiment at the level of state-selected gas phase dynamics.  相似文献   

8.
Full quantum state resolved scattering of the F atom reaction with H(2)(j=0) and H(2)(j=1) was investigated at the collision energies of 0.19 and 0.56 kcalmol. Dramatic difference between the dynamics for the F+H(2)(j=0,1) reactions at both collision energies have been observed. Forward scattering HF(v(')=2) products have been observed unambiguously for the F+H(2)(j=1) reaction at low collision energies, which was attributed to the Feshbach resonances. This study provides a unique case of reaction resonances involving a rotationally excited reagent.  相似文献   

9.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

10.
Upon the Liu, Siegbahn, Truhlar, Horowitz (LSTH) potential energy surface, the reaction probabilities of the three-dimensional (3-D) state-to-state H + H2 (v, j) →H 2(v′, j′) + H reaction are calculated with the linear combination of arrangement channels-scattering wavefunction (LCAC-SW) method. In the calculation, the vibration function of H2 and the radial propagating wave functions are expanded by the real Gauss functions. The calculated threshold energy and the resonating structure are consistent with the results of the accurate quantum scattering calculations, which shows the accuration, simplicity and practicability of the LCAC-SW method. Project supported by the National Natural Science Fondation of China and the Doctoral Foundation of the State Education Commission of China.  相似文献   

11.
Relative integrated cross sections are measured for spin-orbit-conserving, rotationally inelastic scattering of NO (2Pi1/2), hexapole-selected in the upper Lambda-doublet level of the ground rotational state (j = 0.5), in collisions with D2 at a nominal energy of 551 cm-1. The final state of the NO molecule is detected by laser-induced fluorescence (LIF). The state-selected NO molecule is oriented with either the N end or the O end toward the incoming D2 molecule by application of a static electric field E in the scattering region. This field is directed parallel or antiparallel to the relative velocity vector v. Comparison of signals taken for the different applied field directions gives the experimental steric asymmetry SA, defined by SA = (sigma v upward arrow downward arrow E - sigma v upward arrow upward arrow E)/(sigma v upward arrow downward arrow E + sigma v upward arrow upward arrow E), which is equal to within a factor of -1 to the molecular steric effect, Si-->f identical with (sigmaD2-->NO - sigmaD2-->ON)/(sigmaD2-->NO + sigmaD2-->ON). The dependence of the integral inelastic cross section on the incoming Lambda-doublet component is also measured as a function of the final rotational (jfinal) and Lambda-doublet (epsilonfinal) state. The measured steric asymmetries are similar to those previously observed for NO-He scattering. Spin-orbit manifold-conserving collisions exhibit a larger propensity for parity conservation than their NO-He counterparts. The results are interpreted in the context of the recently developed quasi-quantum treatment (QQT) of rotationally inelastic scattering [Gijsbertsen, A.; Linnartz, H.; Taatjes, C. A.; Stolte, S. J. Am. Chem. Soc. 2006, 128, 8777]. The QQT predictions can be inverted to obtain a fitted hard-shell potential that reproduces the experimental steric asymmetry; this fitted potential gives an empirical estimate of the anisotropy of the repulsive interaction between NO and D2. QQT computation of the differential cross section using this simple model potential shows reasonable agreement with the measured differential cross sections.  相似文献   

12.
We report six-dimensional quantum dynamics calculations of the dissociative scattering of molecular hydrogen from the copper111 surface. Two potential energy surfaces are investigated and the results are compared with experiment. Our study completes the preliminary work of Somers et al. [Chem. Phys. Lett. 360, 390 (2002)] and focuses on the role of initial vibrational excitation and on isotopic effects. None of the two investigated potential energy surfaces is found satisfactory: the use of neither potential yields reaction and vibrational excitation probabilities and vibrational efficacies that are in close agreement with experiment. In addition to showing the shortcomings of existing potential energy surfaces we point out an inconsistency in the experimental fits for D2.  相似文献   

13.
A global analytical potential energy surface for the ground state of H(3)(-) has been constructed by fitting an analytic function to the ab initio potential energy values computed using coupled cluster singles and doubles with perturbative triples [CCSD(T)] method and Dunning's augmented correlation consistent polarized valence triple zeta basis set. Using this potential energy surface, time-dependent quantum mechanical wave packet calculations were carried out to calculate the reaction probabilities (P(R)) for the exchange reaction H(-)+H(2)(v, j)-->H(2)+H(-), for different initial vibrational (v) and rotational (j) states of H(2), for total angular momentum equal to zero. With increase in v, the number of oscillations in the P(R)(E) plot increases and the oscillations become more pronounced. While P(R) increases with increase in rotational excitation from j=0 to 1, it decreases with further increase in j to 2 over a wide range of energies. In addition, rotational excitation quenches the oscillations in P(R)(E) plots.  相似文献   

14.
We have measured differential cross sections (DCSs) for the HD (v(')=1,j(')=2,6,10) products of the H+D(2) exchange reaction at five different collision energies in the range 1.48< or =E(coll)< or =1.94 eV. The contribution from the less energetic H atoms formed upon spin-orbit excitation of Br in the photolysis of the HBr precursor is taken into account for two collision energies, E(coll)=1.84 and 1.94 eV, allowing us to disentangle the two different channels. The measured DCSs agree well with new time-dependent quantum-mechanical calculations. As the product rotational excitation increases, the DCSs shift from backward to sideward scattering, as expected. We also find that the shapes of the DCSs show only a small overall dependence on the collision energy, with a notable exception occurring for HD (v(')=1,j(')=2), which appears bimodal at high collision energies. We suggest that this feature results from both direct recoil and indirect scattering from the conical intersection.  相似文献   

15.
Cheng JW  Zheng ST  Yang GY 《Inorganic chemistry》2007,46(24):10261-10267
Hydrothermal reactions of lanthanide(III) oxide and copper halide with isonicotinic acid (Hina) and pyridine-2,3-dicarboxylic acid (H2pdc) or 1,2-benzenedicarboxylic acid (H2bdc) lead to three novel lanthanide(III)-copper(I) heterometallic compounds, namely, [Ce2(ina)5(na)2(H2O)2][Cu5Br4] (1, na=nicotinic acid), [Er4(ina)8(bdc)2(OH)(H2O)5][Cu8I7] (2), and [Ce3(ina)8(bdc)(H2O)4][Cu7Br6] (3). Compound 1 is constructed from two distinct units of the Ln-organic double chains and inorganic [Cu5Br4]nn+ chains. Compound 2 consists of 2D Ln-organic layers and 1D [Cu8I7]nn+ cluster chains. Compound 3 can be viewed as a 1D [Cu6Br6]n chainlike motif inserted into the channels of a 3D Ln-Cu-organic motif. Compounds 1-3 exhibit three different 1D inorganic copper(I)-halide chains interconnected with metal-organic 1D chains, 2D layers, and 3D nets resulting in three mixed-motif non-interpenetrating heterometallic Cu-halide-lanthanide (Ln)-organic frameworks, which represent good examples and a facile method to construct such mixed-motif heterometallic compounds. Furthermore, the IR, TGA, and UV-vis spectra of 1-3 were also studied.  相似文献   

16.
Rotational excitation of HD scattered from Cu(100), Pd(111), and Pd(111):H(D) was measured using molecular beam and quantum-state-specific laser spectroscopy techniques. Greater than 91% of the incident HD population was in the v = 0, J = 0 state. The final rotational distributions from Cu(100), Pd(111), and Pd(111):H(D) were compared for a HD beam at an incident energy of 74 meV. For all the three surfaces studied, rotationally inelastic scattering probabilities were large. We find that the final HD rotational distributions are remarkably similar for the three surfaces even though Pd(111) is very reactive to dissociative adsorption of HD whereas Cu(100) and Pd(111):H(D) are chemically inert.  相似文献   

17.
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H(2)(v = 0, j = 0) --> HF(v' = 2, j' = 0) + H reaction on the Stark-Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.  相似文献   

18.
Adsorption structures of the dibenzo[a,j]coronene (C(32)H(16)) molecule on the clean Si(001)-2 X 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with electronic structure calculations. The dibenzo[a,j]coronene molecules were found to adsorb on three different sites: one major adsorption site and two minor adsorption sites. The formation of four to eight Si-C covalent bonds is responsible for the different surface bonding structures observed. Bond strain effects due to out-of-plane bending of the molecule play a significant role in governing the surface bond energies. The geometries of the three adsorption sites were established by comparison of the experimental and simulated STM images. By applying an electrical pulse, the molecule can be made to hop from one site to another site without breaking the dibenzo[a,j]coronene molecular structure.  相似文献   

19.
The H+ +D2(v=0,j=0)-->HD+D + reaction has been theoretically investigated by means of a time independent exact quantum mechanical approach, a quantum wave packet calculation within an adiabatic centrifugal sudden approximation, a statistical quantum model, and a quasiclassical trajectory calculation. Besides reaction probabilities as a function of collision energy at different values of the total angular momentum, J, special emphasis has been made at two specific collision energies, 0.1 and 0.524 eV. The occurrence of distinctive dynamical behavior at these two energies is analyzed in some detail. An extensive comparison with previous experimental measurements on the Rydberg H atom with D2 molecules has been carried out at the higher collision energy. In particular, the present theoretical results have been employed to perform simulations of the experimental kinetic energy spectra.  相似文献   

20.
<正>Quasi-classical trajectory(QCT) calculations have been carried out to study the generalized polarization dependent differentialcross sections(PDDCSs) for the reactions H + LiH~+(v = 0,j = 0)→H_2 + Li~+ and H~+ + LiH(v = 0,j = 0)→H_2~+ + Li occurring onthe two lowest-lying electronic states of the LiH_2~+ system,using the ab initio potential energy surfaces(PESs) of Martinazzo et al.[3].Four PDDCSs,i.e.,(2π/σ)(dσ_(00)/dω_t),(2π/σ)(dσ_(20)/dω_t),(2π/σ)(dσ_(22+)/dω_t),(2π/σ)(dσ_(21-)/dω_t) have been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号