首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanoresponsive luminescence (MRL) materials promise smart devices for sensing, optoelectronics and security. We present here the first report on the MRL activity of two ReI complexes, opening up new opportunities for applications in these fields. Both complexes exhibit marked solid-state luminescence enhancement (SLE). Furthermore, the pristine microcrystalline powders emit in the yellow-green region, and grinding led to an amorphous phase with concomitant emission redshift and shrinking of the photoluminescence (PL) quantum yields and lifetimes. Quantum chemical calculations revealed the existence of two low-lying triplet excited states with very similar energy levels, that is, 3IL and 3MLCT, having, respectively, almost pure intraligand (IL) and metal-to-ligand charge-transfer (MLCT) character. Transition between these states could be promoted by rotation around the pyridyltriazole−phenylbenzoxazole bond. In the microcrystals, in which rotations are hindered, the 3IL state induces the prominent PL emission at short wavelengths. Upon grinding, rotation is facilitated and the transition to the 3MLCT state results in a larger proportion of long-wavelength PL. FTIR and variable-temperature PL spectroscopy showed that the opening of the vibrational modes favours non-radiative deactivation of the triplet states in the amorphous phase. In solution, PL only arises from the 3MLCT state. The same mechanism accounts for the spectroscopic differences observed when passing from crystals to amorphous powders, and then to solutions, thereby clarifying the link between SLE and MRL for these complexes.  相似文献   

2.
3.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

4.
Ab initio calculations have been performed on [FeII(bpy)3]2+ (bpy=bipyridine) to establish the variation of the energy of the electronic states relevant to light‐induced excited‐state spin trapping as a function of the Fe? ligand distance. Light‐induced spin crossover takes place after excitation into the singlet metal‐to‐ligand charge‐transfer (MLCT) band. We found that the corresponding electronic states have their energy minimum in the same region as the low‐spin (LS) state and that the energy dependence of the triplet MLCT states are nearly identical to the 1MLCT states. The high‐spin (HS) state is found to cross the MLCT band near the equilibrium geometry of the MLCT states. These findings give additional support to the hypothesis of a fast singlet–triplet interconversion in the MLCT manifold, followed by a 3MLCT–HS (5T2) conversion accompanied by an elongation of the Fe? N distance.  相似文献   

5.
We have investigated the photophysical and photochemical features of a luminescent heteroleptic RuII‐polypyridyl probe and of its corresponding RuII‐CuII dinuclear complex formed upon the analyte binding through extensive density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations. The molecular probe contains the tailored imidazo[4,5‐f]‐1,10‐phenanthroline (IIP) ligand for simultaneously binding the RuII core and the target metal ion in aqueous solution. We have rationalized the static photoluminescence quenching observed upon the CuII coordination, on the grounds of distinct excited state deactivation mechanisms which are absent in the free RuII complex probe. Additionally, the emission quenching found upon increasing the solution pH has also been investigated. When coordinated IIP deprotonates, the nature of the lowest excited state of its complex changes from 3MLCT to 3LLCT/3IL. The strong base‐induced emission quenching can be understood in terms of both the energy‐gap law, since the 3LLCT/3IL states lie at a significantly lower energy than the 3MLCT state increasing the contribution of non‐radiative mechanisms, and the expected slower radiative rates from such 3LLCT/3IL states. After CuII binding, the lowest triplet excited state is similar to the analyte‐free probe in both energy and electronic nature. However, Cu‐centered non‐radiative excited states, populated after photoinduced electron transfer and intersystem crossing processes, are responsible for the population drainage of the emissive state.  相似文献   

6.
Ruthenium polypyridine‐type complexes are extensively used sensitizers to convert solar energy into chemical and/or electrical energy, and they can be tailored through their metal‐to‐ligand charge‐transfer (MLCT) properties. Much work has been directed at harnessing the triplet MLCT state in photoinduced processes, from sophisticated molecular architectures to dye‐sensitized solar cells. In dye‐sensitized solar cells, strong coupling to the semiconductor exploits the high reactivity of the (hot) singlet/triplet MLCT state. In this work, we explore the nature of the 1MLCT states of remotely substituted RuII model complexes by both experimental and theoretical techniques. Two model complexes with electron‐withdrawing (i.e. NO2) and electron‐donating (i.e. NH2) groups were synthesized; these complexes contained a phenylene spacer to serve as a spectroscopic handle and to confirm the contribution of the remote substituent to the 1MLCT transition. [Ru(tpy)2]2+‐based complexes (tpy=2,2′:6′,2′′‐terpyridine) were further desymmetrized by tert‐butyl groups to yield unidirectional 1MLCTs with large transition dipole moments, which are beneficial for related directional charge‐transfer processes. Detailed comparison of experimental spectra (deconvoluted UV/Vis and resonance Raman spectroscopy data) with theoretical calculations based on density functional theory (including vibronic broadening) revealed different properties of the optically active bright 1MLCT states already at the Franck–Condon point.  相似文献   

7.
The electronically excited states of formaldehyde and its complexes with alkali metal ions are investigated with the time-dependent density functional theory (TD DFT) method. Vertical transition energies for several singlet and triplet excited states, adiabatic transition energies for the first singlet and triplet excited states S1 and T1, the adiabatic geometries and vibrational frequencies of the ground state S0 and the first singlet and triplet excited states S1 and T1 for formaldehyde and its complexes are calculated. Better agreement with the experiment than that of the CIS method is obtained for CH2O at the TD DFT level. The nonlinear C=O?M+ interaction in the excited states S1 and T1 is weaker than the linear interaction in the ground state. In the S0 and S1 states, the C=O bond is elongated by cation complexation and its stretching frequency is red-shifted, but in the T1 state the C=O bond is shortened and its frequency is blue-shifted.  相似文献   

8.
A novel class of phosphorescent cationic heterobimetallic IrIII/MI complexes, where MI=CuI ( 4 ) and AuI ( 5 ), is reported. The two metal centers are connected by the hybrid bridging 1,3-dimesityl-5-acetylimidazol-2-ylidene-4-olate (IMesAcac) ligand that combines both a chelating acetylacetonato-like and a monodentate N-heterocyclic carbene site coordinated onto an IrIII and a MI center, respectively. Complexes 4 and 5 have been prepared straightforwardly by a stepwise site-selective metalation with the zwitterionic [(IPr)MI(IMesAcac)] metalloproligand (IPr=1,3-(2,6-diisopropylphenyl)-2H-imidazol-2-ylidene) and they have been fully characterized by spectroscopic, electrochemical, and computational investigation. Complexes 4 and 5 display intense red emission arising from a low-energy excited state that is located onto the “Ir(C^N)” moiety featuring an admixed triplet ligand-centered/metal-to-ligand charge transfer (3IL/1MLCT) character. Comparison with the benchmark mononuclear complexes reveals negligible electronic coupling between the two distal metal centers at the electronic ground state. The bimetallic systems display enhanced photophysical properties in comparison with the parental congeners. Noteworthy, similar non-radiative rate constants have been determined along with a two-fold increase of radiative rate, yielding brightly red-emitting cyclometalating IrIII complexes. This finding is ascribed to the increased MLCT character of the emitting state in complexes 4 and 5 due to the smaller energy gap between the 3IL and 1MLCT manifolds, which mix via spin–orbit coupling.  相似文献   

9.
Square-planar NiII complexes are interesting as cheaper and more sustainable alternatives to PtII luminophores widely used in lighting and photocatalysis. We investigated the excited-state behavior of two NiII complexes, which are isostructural with two luminescent PtII complexes. The initially excited singlet metal-to-ligand charge transfer (1MLCT) excited states in the NiII complexes decay to metal-centered (3MC) excited states within less than 1 picosecond, followed by non-radiative relaxation of the 3MC states to the electronic ground state within 9–21 ps. This contrasts with the population of an emissive triplet ligand-centered (3LC) excited state upon excitation of the PtII analogues. Structural distortions of the NiII complexes are responsible for this discrepant behavior and lead to dark 3MC states far lower in energy than the luminescent 3LC states of PtII compounds. Our findings suggest that if these structural distortions could be restricted by more rigid coordination environments and stronger ligand fields, the excited-state relaxation in four-coordinate NiII complexes could be decelerated such that luminescent 3LC or 3MLCT excited states become accessible. These insights are relevant to make NiII fit for photophysical and photochemical applications that relied on PtII until now.  相似文献   

10.
UV-vis absorption and resonance Raman spectra of the complexes fac-[Re(Cl)(CO)3(stpy)2] and fac-[Re(stpy)(CO)3(bpy)]+ (stpy = t-4-styrylpyridine, bpy = 2,2'-bipyridine) show that their lowest absorption bands are dominated by stpy-localized intraligand (IL) pi pi* transitions. For the latter complex a Re --> bpy transition contributes to the low-energy part of the absorption band. Optical population of the 1IL excited state of fac-[Re(Cl)(CO)3(stpy)2] is followed by an intersystem crossing (< or =0.9 ps) to an 3IL state with the original planar trans geometry of the stpy ligand. This state undergoes a approximately 90 degrees rotation around the stpy C=C bond with a 11 ps time constant. An electronically excited species with an approximately perpendicular orientation of the phenyl and pyridine rings of the stpy ligand is formed. Conversion to the ground state and isomerization occurs in the nanosecond range. Intraligand excited states of fac-[Re(stpy)(CO)3(bpy)]+ show the same behavior. Moreover, it was found that the planar reactive 3IL excited state is rapidly and efficiently populated after optical excitation into the Re --> bpy 1MLCT excited state. A 1MLCT --> 3MLCT intersystem crossing takes place first with a time constant of 0.23 ps followed by an intramolecular energy transfer from the ReI(CO)3(bpy) chromophore to a stpy-localized 3IL state with a 3.5 ps time constant. The fast rate ensures complete conversion. Coordination of the stpy ligand to the ReI center thus switches the ligand trans-cis isomerization mechanism from singlet to triplet (intramolecular sensitization) and, in the case of fac-[Re(stpy)(CO)3(bpy)]+, opens an indirect pathway for population of the reactive 3IL excited state via MLCT states.  相似文献   

11.
Transition metal complexes are vital components in a wide range of photooptical applications; these range from targeted drug delivery to devices for the conversion of solar energy to electrical and/or stored chemical energy. Metal centered (MC) ligand field excited states play important roles in the photophysics of those complexes having partially filled d-orbitals. This review offers a broad perspective on key investigations that have characterized the chemistry and physics of MC excited states in d3 and d6 transition metal complexes. It will also illustrate the impact of these excited states on various photooptical applications and highlight efforts to understand, control, and tune these MC excited states in the context of such applications.  相似文献   

12.
We describe the synthesis, electrochemical, and photophysical properties of two new luminescent Ru(II) diimine complexes covalently attached to one and three 4-piperidinyl-1,8-naphthalimide (PNI) chromophores, [Ru(bpy)(2)(PNI-phen)](PF(6))(2) and [Ru(PNI-phen)(3)](PF(6))(2), respectively. These compounds represent a new class of visible light-harvesting Ru(II) chromophores that exhibit greatly enhanced room-temperature metal-to-ligand charge transfer (MLCT) emission lifetimes as a result of intervening intraligand triplet states ((3)IL) present on the pendant naphthalimide chromophore(s). In both Ru(II) complexes, the intense singlet fluorescence of the pendant PNI chromophore(s) is nearly quantitatively quenched and was found to sensitize the MLCT-based photoluminescence. Excitation into either the (1)IL or (1)MLCT absorption bands results in the formation of both (3)MLCT and (3)IL excited states, conveniently monitored by transient absorption and fluorescence spectroscopy. The relative energy ordering of these triplet states was determined using time-resolved emission spectra at 77 K in an EtOH/MeOH glass where dual emission from both Ru(II) complexes was observed. Here, the shorter-lived higher energy emission has a spectral profile consistent with that typically observed from (3)MLCT excited states, whereas the millisecond lifetime lower energy band was attributed to (3)IL phosphorescence of the PNI chromophore. At room temperature the data are consistent with an excited-state equilibrium between the higher energy (3)MLCT states and the lower energy (3)PNI states. Both complexes display MLCT-based emission with room-temperature lifetimes that range from 16 to 115 micros depending upon solvent and the number of PNI chromophores present. At 77 K it is apparent that the two triplet states are no longer in thermal equilibrium and independently decay to the ground state.  相似文献   

13.
The thermal and photochemical reactions of a newly synthesized complex, [RuII(TPA)(tpphz)]2+ ( 1 ; TPA=tris(2‐pyridylmethyl)amine, tpphz=tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h: 2′′′,3′′′‐j]phenazine), and its derivatives have been investigated. Heating a solution of complex 1 (closed form) and its derivatives in MeCN caused the partial dissociation of one pyridylmethyl moiety of the TPA ligand and the resulting vacant site on the RuII center was occupied by a molecule of MeCN from the solvent to give a dissociated complex, [RuII3‐TPA)(tpphz)(MeCN)]2+ ( 1′ , open form), and its derivatives, respectively, in quantitative yields. The thermal dissociation reactions were investigated on the basis of kinetics analysis, which indicated that the reactions proceeded through a seven‐coordinate transition state. Although the backwards reaction was induced by photoirradiation of the MLCT absorption bands, the photoreaction of complex 1′ reached a photostationary state between complexes 1 and 1′ and, hence, the recovery of complex 1 from complex 1′ was 67 %. Upon protonation of complex 1 at the vacant site of the tpphz ligand, the efficiency of the photoinduced recovery of complex 1 +H+ from complex 1′ +H+ improved to 83 %. In contrast, dinuclear μ‐tpphz complexes 2 and 3 , which contained the RuII(TPA)(tpphz) unit and either a RuII(bpy)2 or PdIICl2 moiety on the other coordination edge of the tpphz ligand, exhibited 100 % photoconversion from their open forms into their closed forms ( 2′ → 2 and 3′ → 3 ). These results are the first examples of the complete photochromic structural change of a transition‐metal complex, as represented by complete interconversion between its open and closed forms. Scrutinization by performing optical and electrochemical measurements allowed us to propose a rationale for how metal coordination at the vacant site of the tpphz ligand improves the efficiency of photoconversion from the open form into the closed form. It is essential to lower the energy level of the triplet metal‐to‐ligand charge‐transfer excited state (3MLCT*) of the closed form relative to that of the triplet metal‐centered excited state (3MC*) by metal coordination. This energy‐level manipulation hinders the transition from the 3MLCT* state into the 3MC* state in the closed form to block the partial photodissociation of the TPA ligand.  相似文献   

14.
The absorption spectra and emission spectral band shapes of several polypyridine-ligand (PP) bridged bis-ruthenium(II) complexes imply that the Ru(II)/Ru(III) electronic coupling is weak in their lowest energy metal to ligand charge transfer (MLCT) excited states. Many of these PP-bridging ligands contain pyrazine moieties and the weak electronic coupling of the excited states contrasts to the strong electronic coupling inferred for the correlated mixed-valence ground states. Although the bimetallic complexes emit at significantly lower energy than their monometallic analogs, the vibronic contributions to their 77 K emission spectra are much stronger than expected based on comparison to the monometallic analogs (around twofold in some complexes) and this feature is characteristic of bimetallic complexes in which the mixed-valence excited states are electronically localized. The weaker excited state than ground state donor/acceptor electronic coupling in this class of complexes is attributed to PP-mediated super-exchange coupling in which the mediating orbital of the bridging ligand (PP-LUMO) is partly occupied in the MLCT excited states, but is unoccupied in the ground states; therefore, the vertical Ru(III)-PP (MLCT) energy is larger and the mixing coefficient smaller in these excited states than is found for Ru(II)-PP in the corresponding ground states.  相似文献   

15.
A new family of trimetallic complexes of the form [(bpy)2M(phen‐Hbzim‐tpy)M′(tpy‐Hbzim‐phen)M(bpy)2]6+ (M=RuII, Os; M′=FeII, RuII, Os; bpy=2,2′‐bipyridine) derived from heteroditopic phenanthroline–terpyridine bridge 2‐{4‐[2,6‐di(pyridin‐2‐yl) pyridine‐4‐yl]phenyl}‐1H‐imidazole[4,5‐f][1,10]phenanthroline (phen‐Hbzim‐tpy) were prepared and fully characterized. Zn2+ was used to prepare mixed‐metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal‐centered reversible oxidation and ligand‐centered reduction processes. Steady‐state and time‐resolved luminescence data show that the potentially luminescent RuII‐ and OsII‐based triplet metal‐to‐ligand charge‐transfer (3MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying 3MLCT (for Ru and Os) or triplet metalcentered (3MC) excited states of the FeII subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular‐wire‐like complexes investigated here can behave as efficient light‐harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest‐energy excited states are located.  相似文献   

16.
Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)3 units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy 1MLCT state followed by intersystem crossing to emitting 3MLCT states, photoreactive 3IL states are populated by an efficient energy-transfer process. The involvement of these 3IL states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest 1IL state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)3 moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy 1MLCT state. The photoreaction can only be triggered by optical population of the higher lying 1IL excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest 3MLCT state.  相似文献   

17.
The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.  相似文献   

18.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

19.
Hideyuki Tatsuno  Kasper S. Kjr  Kristjan Kunnus  Tobias C. B. Harlang  Cornelia Timm  Meiyuan Guo  Pavel Chbera  Lisa A. Fredin  Robert W. Hartsock  Marco E. Reinhard  Sergey Koroidov  Lin Li  Amy A. Cordones  Olga Gordivska  Om Prakash  Yizhu Liu  Mads G. Laursen  Elisa Biasin  Frederik B. Hansen  Peter Vester  Morten Christensen  Kristoffer Haldrup  Zoltn Nmeth  Dorottya Srosin Szemes   va Bajnczi  Gyrgy Vank  Tim B. Van Driel  Roberto Alonso‐Mori  James M. Glownia  Silke Nelson  Marcin Sikorski  Henrik T. Lemke  Dimosthenis Sokaras  Sophie E. Canton  Asmus O. Dohn  Klaus B. Mller  Martin M. Nielsen  Kelly J. Gaffney  Kenneth Wrnmark  Villy Sundstrm  Petter Persson  Jens Uhlig 《Angewandte Chemie (International ed. in English)》2020,59(1):364-372
Iron N‐heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub‐ps X‐ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition‐metal complexes for similar ultrafast decays to optimize photochemical performance.  相似文献   

20.
Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)4(2,2′-bipyridine)]2− (1), [Fe(CN)4(2,3-bis(2-pyridyl)pyrazine)]2− (2) and [Fe(CN)4(2,2′-bipyrimidine)]2− (3) were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the 1MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the 3MLCT lifetime to range from 180 fs to 67 ps. The 3MLCT lifetimes in 1 and 2 decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (3MC) excited state, as established by the Tanabe–Sugano analysis of the Fe 2p3d RIXS data. In contrast, the 3MLCT lifetime in 3 changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing 3MLCT → ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The 3MLCT → GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode ( = 1530 cm−1), which is most displaced for complex 3, making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the 3MLCT and the 3MC states and suppression of the intramolecular distortion of the acceptor ligand in the 3MLCT excited state.

Photoinduced intramolecular electron transfer in Fe tetracyano-polypyridyl complexes was investigated with static and time-resolved UV-visible absorption and resonant inelastic X-ray scattering which revealed a competition of two relaxation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号