首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism by which a surface oxide layer on Pd(1 1 1) transforms to a PdO(1 0 1) thin film during oxidation with gaseous oxygen atoms in ultrahigh vacuum. Our results provide evidence that the precursor to bulk PdO formation is a distinct oxide phase that forms as small particles, referred to as PdO seeds, after the surface oxide saturates. With increasing oxygen coverage, the PdO seeds grow in size and eventually transform to more stable particles that agglomerate to yield a PdO film. Oxidation effectively ceases when the surface oxide layer is completely replaced by the bulk PdO film, demonstrating that the surface oxide is needed for PdO formation at the conditions studied. Both the kinetics of PdO formation and the final thickness of the PdO thin film depend strongly on the thermal stability of the PdO seeds. Below the decomposition temperature of the seeds (600 K), oxidation follows kinetics similar to Langmuirian adsorption and appears to be limited only by the rate of oxygen adsorption onto the surface oxide. In contrast, PdO formation above 600 K initially exhibits acceleratory kinetics, with the rates starting low but increasing steadily during the initial growth of PdO. We also observe a significant decrease in PdO(1 0 1) film thickness and improved crystallinity when oxidation is conducted below 600 K. We show that the trends observed in the oxidation kinetics and film thickness can be qualitatively explained within the context of a model in which the thermodynamic stability of PdO particles increases with increasing particle size and PdO seeds/particles coexist with a two-dimensional (2D) gas of oxygen atoms adsorbed on the surface oxide layer. This model suggests that the PdO particle-2D gas coexistence relation gives rise to three distinct growth regimes, namely, stable seed nucleation, metastable seed nucleation and oxygen dissolution into the subsurface where the latter is established at 2D gas coverages below the stability limit of a flat PdO surface.  相似文献   

2.
The adsorption and thermal decomposition of N-methylaniline (NMA) on the Pt(1 1 1) surface has been studied with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). NMA adsorbs molecularly at 85 K through the nitrogen lone pair and is stable up to 300 K. At temperatures of 300–350 K it converts to two or more surface intermediates including the N-methyleneaniline (NMEA) species. This NMEA intermediate dissociates upon annealing to 450 K, and further annealing leads to the desorption of HCN and H2, leaving only C on the surface at 800 K.  相似文献   

3.
In this paper we present the recent progress in the growth of (1 0 0) HgCdTe epilayers using metal organic chemical vapour deposition on GaAs epi-ready substrates. Particular progress has been achieved in the reduction of macro-defects known as “hillocks”, revealed on the surface of HgCdTe epilayers with (1 0 0) crystallographic orientation. The large-scale defects can arise from such sources as poor substrate processing, dust and remnants from previous deposition, and non optimal parameters of nucleation and growth process. In our experiment, hillocks density was decreased to <102 cm−2 by proper choice of the growth parameters.Obtained epilayers are suitable for device fabrication. So far, significant improvements has been obtained in photoconductors operated at near-room temperatures. Devices fabricated from (1 0 0) HgCdTe have about one order of magnitude higher voltage responsivity than their (1 1 1) B counterparts.  相似文献   

4.
We investigate the temperature-dependent surface etching process induced by Ce silicide on Si(1 0 0) using scanning tunneling microscopy and X-ray photoelectron spectroscopy. We found that step edges on the Si(1 0 0) surface are gradually roughened due to the formation of Ce silicide as a function of substrate temperature. Unlike the Si(1 1 1) surface, however, terrace etching also occurs in addition to step roughening at 500 °C. Moreover, we found that Si(1 0 0) dimers are released and formed dimer vacancy lines because bulk diffusion of Ce silicide into Si(1 0 0) surface occurs the defect-induced strain at higher temperature (∼600 °C).  相似文献   

5.
Yoshiteru Takagi  Susumu Okada   《Surface science》2008,602(17):2876-2879
First-principle electronic structure calculation reveals the appearance of a new class of surface state on hydrogenated and clean Si(1 1 1) surfaces. The states are found to exhibit different characteristics to conventional surface electron states in terms of the peculiar distribution of the wavefunction depending on the wavenumber. In addition, the state results in flat dispersion bands in a part of the surface Brillouin zone having energy of about 8 eV below the top of the valence band. An analytic expression based on the tight-binding approximation corroborates the surface electron state results from the delicate balance of the electron transfer among the atoms situated near the surface. The obtained results give a possible extension and generalization of the edge state in graphite ribbons with zigzag edges.  相似文献   

6.
Vapour deposition of Ce onto a Rh(1 1 0) single crystal at room temperature is studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and low energy electron diffraction (LEED). The thicknesses of the deposited Ce layers are estimated to be between 2 and 9 Å. To study the changes in the Ce-Rh surface layer, the samples are annealed at temperatures between 500 and 1000 °C after Ce deposition.After heating, a c(2 × 2) LEED pattern appears for the sample with the thinnest deposited Ce layer (2.4 Å). For samples with thicker Ce-films, the LEED pattern co-exists of a c(2 × 2) structure and a more diffuse 6% contracted (2 × 1) structure. This appears at the same temperature as the Ce 3d and Rh 3d core levels exhibit sharp intensity changes and binding energy shifts.The intensity of the f0, f1 and f2 multiplets in the Ce 3d core level spectra change when the annealing temperature is increased. The relative intensity of the Ce 3d f0 and f2 features compared to the Ce 3d f1 features is largest after annealing to 500 °C. This is below the temperature at which the ordered surface alloy is formed. When the sample is heated above the formation temperature of the surface alloy, the relative intensity of the Ce 3d f0 and f2 features decrease.  相似文献   

7.
The structure and formation of an ultrathin hexagonal boron nitride (h-BN) film on Pt(1 1 1) has been studied by a combination of scanning tunneling microscopy, low energy electron diffraction, low energy electron microscopy, X-ray absorption and high resolution core level spectroscopy. The study shows that a single boron nitride layer is formed on Pt(1 1 1), resulting in a coincidence structure. High resolution scanning tunneling microscopy (STM) images of the h-BN ultrathin film display only one of the atomic species in the unit cell. Probing the boron and nitrogen related local density of states by near edge X-ray absorption fine structure measurements we conclude that the nitrogen sublattice is visible in STM images. The growth of the single hexagonal boron nitride layer by vapourized borazine in the pressure range of 1×10-61×10-8 at 800 °C is further studied by low energy electron microscopy, and reveals that the number of nucleation sites and the perfection of the growth is strongly pressure dependent. A model for the single, hexagonal, boron nitride layer on Pt(1 1 1) is proposed.  相似文献   

8.
p-type quantum-well infrared photodetectors (QWIPs) demonstrate normal incidence response due to band mixing by utilizing valence band transitions that may break the selection rule limiting n-type QWIPs. Due to even more complicated valence band structure in (1 1 1) orientation, it is interesting to see that the p-type QWIP show both absorption and photocurrent response dominant in normal incidence. The p-type GaAs/AlGaAs QWIP was fabricated on GaAs(1 1 1)A substrate by molecular beam epitaxy (MBE) using silicon as dopant with a measured carrier concentration of 1.4 × 1018 cm−3. The photocurrent spectrum exhibits a peak at a wavelength of 7 μm with a relatively broad peak width (Δλ/λp  50%), indicating that the final state is far deep within the continuum of the valence band. The p-QWIP demonstrates a responsivity of about 1 mA/W, which is limited by the relatively low doping concentration.  相似文献   

9.
A well ordered c(8 × 2)-InAs monolayer is grown by molecular beam epitaxy (MBE) on a GaAs(0 0 1) substrate. After slow sublimation of this monolayer up to 560 °C, a homogeneously (n × 6) reconstructed GaAs surface is obtained. This surface is studied by scanning tunneling microscopy (STM) in UHV. This shows that it is well-ordered on a large scale with 200 nm long As dimer rows along and is also locally (12 × 6) reconstructed, the cell structure is proposed. We believe that this surface organization results from the specific As/Ga (0.7) surface atomic ratio obtained after the InAs monolayer growth and sublimation cycle.  相似文献   

10.
The adsorption and reaction of methyl lactate (CH3CH(OH)COOCH3) is studied in ultrahigh vacuum on a Pd(1 1 1) surface using temperature-programmed desorption (TPD) and reflection–absorption infrared spectroscopy (RAIRS). Methyl lactate reacts at relatively low temperatures (220 K) by O–H bond scission. This intermediate can either react with hydrogen to reform methyl lactate at 280–300 K or undergo β-hydride elimination to form flat-lying methyl pyruvate. This decomposes to form acetyl and methoxy carbonyl species as found previously following methyl pyruvate adsorption on Pd(1 1 1). These species predominantly react to form carbon monoxide, methane and hydrogen.  相似文献   

11.
The couple sulfonato/Si(1 1 1)-7 × 7 leads to remarkable 2D chiral molecular assembly with a stability improved at room temperature. The voltage-dependency of the STM images has been experimentally investigated and the correlation between STM images and PDOS has been studied. The proposed empirical model of the adsorption of molecules on Si(1 1 1)-7 × 7 has been justified by the experimental and theoretical data.  相似文献   

12.
The process of GaSe native oxide formation was studied using atomic-force microscopy. It was found that the oxide film growth is accompanied by a work function increase. This increase saturates in several hours. The illumination by 1 mW laser at 650 nm stimulates the oxidation process. Continuous illumination changes the work function by 1 eV and that is 2 times higher than that without irradiation. It is supposed that the oxide formation occurs at edge dislocation lines.  相似文献   

13.
The surface band bending in ZnSe(0 0 1), as a function of the temperature, is investigated both in the valence band (by photoemission) and in the conduction band (by inverse photoemission and absorbed current spectroscopies). Two different mechanisms are invoked for interpreting the experimental data: the band bending due to surface states, and the surface voltage induced by the incident beam. While the latter is well known in photoemission (surface photovoltage), we demonstrate the existence of a similar effect in inverse photoemission and absorbed current spectroscopies, induced by the incident electrons instead of photons. These results point to the importance of considering the surface voltage effect even in electron-in techniques for a correct evaluation of the band bending.  相似文献   

14.
Surface states are a unique and important class of quantum states that shave an important effect on the electronic properties of Cu(1 1 0) surface. The Cu(1 1 0) surface has been studied using ultraviolet photoemission spectroscopy (PES), inverse photoemission spectroscopy (IPES), and reflection anisotropy spectroscopy (RAS), and shows a resonance in the RAS spectra at 2.1 eV due to a transition between occupied and unoccupied surface states. The unoccupied surface state involved in the RAS transition at an energy of 1.7 eV at the point of the surface Brillouin zone has been investigated using IPES and the occupied surface state is seen in PES spectra at 0.45 eV below the Fermi level. The energy difference of the surface states, 2.15 eV, is a good match to the transition energy found in the RAS experiments.  相似文献   

15.
The phase diagram of the fcc(1 1 0) surfaces with missing-row reconstructions induced by adatoms, is calculated by use of the Blume–Emmery–Griffiths model. In the model, we introduce adatom–adatom interactions to determine surface structures and dipole–dipole interactions to describe the effect of zigzag adsorption. The interactions between nearest-neighbor (NN) and next-nearest-neighbor (NNN) rows are considered. The calculation of the temperature versus adatom chemical potential phase diagram is performed using mean-field approximation. It is indicated that if NN and NNN interactions are competitive, there appear either dipole or coverage modulated (incommensurate) phases at high temperatures for a wide range of the interactions.  相似文献   

16.
The strained InGaAs/AlGaAs layer structures have been grown on GaAs ( 10 0) and (3 1 1)B substrates in a horizontal low-pressure metalorganic vapor-phase epitaxy system at a temperature of 800°C. In the surface observation using a high-resolution scanning electron microscope, we have found that surface deformation phenomena induced by electron-beam irradiation in strained In0.36Ga0.64As,/Al0.3Ga0.7As layers on GaAs (1 0 0) and (3 1 1)B substrates. The change of the surface morphology was observed in real time on the display of SEM with the accelerating voltage of 30 kV and the irradiated time of 60–120 s. The surface deformation through mass transport seems to be the cause of the residual strain relaxation due to electron-beam irradiation.  相似文献   

17.
《Surface science》2002,496(1-2):L662-L668
At room temperature, the oxide formation on Al(1 1 1) starts on the boundaries of relatively large islands containing about or more than 20 chemisorbed oxygen atoms. We show that this special feature can be rationalized by assuming that the jump rate of oxygen atoms to the subsurface layer depends on lateral oxygen–oxygen interactions in the ground and activated states. In both cases, the lateral interaction is considered to consist of two components, including attractive nearest-neighbour interaction and repulsive elastic interaction at longer distances. To explain the experimentally observed details of oxide nucleation, the attractive interaction in the activated state should be slightly weaker than in the ground state.  相似文献   

18.
M. Busch  D. Blauth  H. Winter 《Surface science》2008,602(16):2808-2815
The structure of the ordered p(2 × 1) and p(3 × 1) phases of adsorbed oxygen as well as the formation of ultrathin NiO(1 0 0) layers on a Ni(1 1 0) single crystal are investigated by grazing scattering of fast hydrogen atoms. Via ion beam triangulation based on the detection of the number of emitted electrons, we obtain direct information on the structure of oxygen adsorbates and ultrathin nickel oxide layers. For oxidation using atomic instead of molecular oxygen, the gas exposure can be reduced by almost two orders of magnitude. We compare the experimental results with computer simulations based on classical projectile trajectories for grazing scattering of fast hydrogen atoms and test structure models for oxygen adsorbed on Ni(1 1 0) and NiO(1 0 0).  相似文献   

19.
20.
We present experimental results on rare transitions between two states due to intrinsic noise between two states in a bistable surface reaction, namely the catalytic oxidation of CO on Pd(111) surfaces. The mean time scales involved are typically of order 104 s and the probability distribution shows two peaks over a large part of the bistable regime of this surface reaction. We use measurements of the resulting CO2 rate as well as photoelectron emission microscopy (PEEM) to characterize these rare transitions. From our dynamic data we can extract probability distributions for the CO2 rate. We use x-t plots from PEEM measurements to describe the transitions, which are-as we demonstrate-characterized by one wall moving through the field of view in PEEM measurements. The resulting probability distributions for the CO2 rate are shown to depend strongly on the value, Y, of the CO fraction in the reactant flux inside the bistable regime. We find that the probability distribution is strongly asymmetric indicating that the two basins of attraction are rather different in depth and width. This is also concluded from the PEEM measurements, which show in one case a rather sharp and narrow domain wall going one way, while it is rather wide and diffuse for the motion in the opposite direction. To have two basins of attraction in the bistable regime, which are rather different in nature is reminiscent of other bistable systems such as, for example, optical bistability, although the time scales involved in the present system are entirely different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号