首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shape of absorption bands of aggregates formed by two, four, and nine molecules of a polymethine dye was calculated by the Monte-Carlo method. The energy of interaction of the molecules in the ground state was simulated using atom-atom potentials, and the energies of interaction between dipole moments of electronic transitions of the monomers were estimated by quantum-chemical methods. In the dimer aggregate the dipole moments of the electronic transitions in the monomers interact weakly; therefore, the electron absorption spectrum should be similar to that of the monomer. On going from the dimer to the aggregates consisting of four and nine monomers, the relative positions of monomers change and this, in turn, increases the energy of interaction between the dipole moments of their electronic transitions, resulting in a red shift characteristic ofJ-aggregates and narrowing of the absorption bands. Translated fromIzvestiya Akademii Nauk Seriya Khimicheskaya. No. 1, pp. 67–69, January, 1997.  相似文献   

2.
Exciton absorption spectrum of optically excited linear molecular aggregate is theoretically investigated. The sum rules for the integral intensity of the absorption spectrum are derived. The dipole moments of the optical transitions from the one-exciton states to the two-exciton states are presented. The results obtained indicate an energy increase of the exciton transition after a single excitation of the aggregate. It accounts for the observed short-wavelength shift of the J-band of the pseudoisocyanine (PIC) J-aggregates after their optical excitation. The comparison of the experimental energy of the shift with its theoretical evaluation allows to estimate the number of monomers forming a typical PIC J-aggregate in the solutionN ?20–30.  相似文献   

3.
Vibrational transition dipole moments and absorption band intensities for the ground state of formaldehyde, including the deuterated isotopic forms, are calculated. The analysis is based on ab initio SCF and CI potential energy and dipole moment surfaces. The formalism derives from second-order perturbation theory and involves the expansion of the dipole moment in terms of normal coordinates, as well as the incorporation of point group symmetry in the selection of the dipole moment components for the allowed transitions. Dipole moment expansion coefficients for the three molecule-fixed Cartesian coordinates of formaldehyde are calculated for internal and normal coordinate representations. Transition dipole moments and absorption band intensities of the fundamental, first overtone, combination, and second overtone transitions are reported. The calculated intensities and dipole moment derivatives are compared to experiment and discussed in the context of molecular orbital and bond polarization theory.  相似文献   

4.
The multireference spin-orbit configuration interaction method is employed to calculate potential energy curves for the ground and low-lying excited states of the KrH(+) cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of KrH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that the A-band absorption is dominated by the parallel A (1)Sigma(+)<--X (1)Sigma(+) transition. In the low-energy part of the band (<83x10(3) cm(-1)) the absorption is mainly caused by the spin-forbidden b (3)Pi(0(+) )<--X (1)Sigma(+) excitation, while perpendicular transitions to the B (1)Pi and b (3)Pi(1) states are significantly weaker. The branching ratio Gamma for the photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or=90x10(3) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Kr(+)((2)P(12)) ions, which may be used to obtain laser generation on the Kr(+)((2)P(12)-(2)P(32)) transition.  相似文献   

5.
Potential energy curves for the X (1)Sigma(g) (+) ground state and Omega=0(u) (+), 1(u) valence states and dipole moments for the 0(u) (+), 1(u)-X transitions are obtained in an ab initio configuration interaction study of Cl(2) including spin-orbit coupling. In contrast to common assumptions, it is found that the B (3)Pi(0(+)u)-X transition moment strongly depends on internuclear distance, which has an important influence on the Cl(2) photodissociation. Computed energy curves and transition moments are employed to calculate the A, B, C<--X extinction coefficients, the total spectrum for the first absorption band, and the Cl(*)((2)P(1/2))/Cl((2)P(3/2)) branching ratio as a function of excitation wavelength. The calculated data are shown to be in good agreement with available experimental results.  相似文献   

6.
The IR and UV/vis linear dichroic spectra of reduced anionic flavin mononucleotide (FMNH-) partially oriented in poly(vinyl alcohol) (PVA) films have been measured to determine the direction of the major electronic transition dipole moments. The IR linear dichroism (LD) was measured in the 1750-1350 cm(-1) region to provide the overall molecular orientation of the FMNH- in the stretched films. Time-dependent density functional theory using the B3LYP functional was used to calculate the normal modes and the transition dipole moments of reduced lumiflavin. The calculated normal modes assisted in IR band assignments and in the determination of the IR transition dipole moment directions which were required for the determination of the orientation parameters for FMNH- in PVA films. The UV/vis LD spectrum was measured over the 200-700 nm region and was resolved into contributions from three pi-->pi* transitions. The directions of the transitions are 90 degrees+/-4 degrees at 440 nm, 79 degrees+/-4 degrees at 350 nm, and 93 degrees+/-4 degrees at 290 nm with counterclockwise rotations with respect to the N5-N10 axis. Comparison of the calculated and experimentally determined transition dipole moments allowed for refined assignment of the transition dipole moment directions. To our knowledge, this is the first experimental evidence that the 350-450 nm absorption arises from two unique transitions. Remarkably, the two lowest energy transition dipole moments for FMNH- are nearly parallel to those obtained in prior studies for both oxidized and semiquinone flavin.  相似文献   

7.
We have, in infrared reflection absorption measurements, observed narrow dipole active absorption lines associated with the fundamental internal vibrational transitions of N(2) and O(2) physisorbed at 30 K on the chemically inert Pt(111)(1 x 1)H surface. Such transitions are forbidden for free homonuclear molecules and become dipole active at a metal surface due to polarization induced surface dipole moments. The measurements show that the internal stretch vibration frequencies are lowered by 7-8 cm(-1) relative to the gas phase values. The measured static and dynamic dipole moments are in the ranges of 0.06-0.07 and 0.001-0.002 D, respectively. We find that good estimates of the induced dynamic as well as the static dipole moments can in general be obtained from a van der Waals model but that the ratios of the measured static and dynamic moments indicates a need for a refinement of the dipole moment function.  相似文献   

8.
The shape, broadening, and shift of optical absorption spectra of molecular impurity centers in polymer glasses are considered in terms of inhomogeneous energy distributions and coupling of electronic transitions to vibrations. Persistent spectral hole burning was applied for frequency-selective probing of zero-phonon lines. The shift and broadening of spectral holes were studied between 5 and 50 K and by applying a hydrostatic He gas pressure up to 200 bar. Broadband absorption spectra were recorded between 5 and 300 K in poly(methyl methacrylate) and polyethylene. In addition to "normal" thermal broadening, due to the first- and second-order electron phonon coupling, several narrowing components were predicted on the basis of frequency dependent hole behavior. Thermal expansion of the matrix and the relaxation of local strains, previously accumulated on cooling below the glass temperature can lead to shrinking of the inhomogeneous width. A Voigt treatment of absorption band shapes reveals that the Gaussian component can indeed suffer remarkable narrowing. Inhomogeneous band shapes and the frequency-dependent thermal and baric line shifts were rationalized with the aid of a pair of two-body Lennard-Jones potentials. The shift of potential well minima is a crucial factor influencing solvent shifts, inhomogeneous band shapes, pressure shift coefficients, and quadratic electron phonon coupling constants.  相似文献   

9.
The multireference spin-orbit CI method is employed to calculate potential energy curves for the ground and low-lying excited states of the XeH+ cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of XeH+. On this basis, the partial and total absorption spectra in this energy range are obtained. It is found that the A-band absorption is dominated by the spin-forbidden b3Pi0+ <-- X1sigma+ parallel transition, while perpendicular transitions to the B(1)Pi and b(3)Pi(1) states are significantly weaker. The Gamma(nu) branching ratio defined as the ratio of the Xe+(2P(1/2)) yield to the total yield of the Xe+ cations from the XeH+ photodissociation is calculated for the (42-80) x 10(3) spectral range. It is shown that Gamma(nu) increases smoothly from <0.2 in the red and blue tails of the band to its maximum of 0.92 in the middle of the band, at E approximately 51.4 x 10(3) cm(-1). The high Gamma(nu) values correspond to the predominant formation of the spin-excited Xe+(2P(1/2)) ions that may be used to obtain IR laser generation at the Xe+(2P(1/2) - 2P(3/2)) transition. The calculated XeH+ data are compared with those for the isovalent ArH+, KrH+, and HI systems.  相似文献   

10.
The photophysical properties of two newly synthesized photoactive compounds with asymmetrical D-pi-A structure and symmetrical D-pi-A-pi-D structure are investigated in different aprotic solvents by steady-state and femtosecond fluorescence depletion measurements. It is found that the asymmetrical DA compound has larger dipole moment change than that of the symmetrical DAD compound upon excitation, where the dipole moments of the two compounds have been estimated using the Lippert-Mataga equation. Furthermore, the steady-state spectral results show that increasing solvent polarity results in small solvatochromic shift in the absorption maxima but a large red shift in the fluorescence maxima for them, indicating that the dipole moment changes mainly reflect the changes of dipole moment in excited-state rather than in ground state. The red-shifted fluorescence band is attributed to an intramolecular charge transfer (ICT) state upon photoexcitation, which could result in a strong interaction with the surrounding solvents to cause the fast solvent reorganization. The resulting ICT states of symmetrical compounds are less polar than the asymmetrical compounds, indicating the different extents of stabilization of solute-solvent interaction in the excited state. Femtosecond fluorescence depletion measurements are further employed to investigate the fast solvation effects and dynamics of the ICT state of these two novel compounds. The femtosecond fluorescence depletion results show that the DA compound has faster solvation time than that of DAD compound, which corresponds to the formation of relaxed ICT state (i.e., a final ICT state with rearranged solvent molecules after solvation) in polar solvents. It is therefore reasonably understood that the ICT compounds with asymmetrical (D-pi-A) structure have better performance for those photovoltaic devices, which strongly rely on the nature of the electron push-pull ability, compared to those symmetrical compounds (D-pi-A-pi-D).  相似文献   

11.
The electronic absorption spectrum of 3-fluoropyridine in the vapour state and in solutions in different solvents in the region 3000-1900 Å has been measured and analysed. Three systems of absorption bands; n→π* transition I, π→π* transition II and π→π* transition III are identified. The oscillator strength of the absorption band systems due to the π→π* transition II and π→π* transition III and the excited state dipole moments associated with these transitions have been determined by the solvent-shift method.  相似文献   

12.
The donor-acceptor copolymer containing benzothiadiazole (electron acceptor), linked to functionalized fluorene (electron donor), [poly[9,9-bis(3'-(tert-butyl propanoate))fluorene-co-4,7-(2,1,3-benzothiadiazole)] (LaPPS40), was synthesized through the Suzuki route. The polymer was characterized by scanning electron microscopy, gel permeation chromatography, NMR, thermal analysis, cyclic voltammetry, X-ray photoelectron spectroscopy, UV-vis spectrometry, and photophysical measurements. Theoretical calculations (density functional theory and semiempirical methodologies) used to simulate the geometry of some oligomers and the dipole moments of molecular orbitals involved were in excellent agreement with experimental results. Using such data, the higher energy absorption band was attributed to the π-π* (S(0) → S(4)) transition of the fluorene units and the lower lying band was attributed to the intramolecular (ICT) (S(0) → S(1)) charge transfer between acceptor (benzothiadiazole) and donor groups (fluorene) (D-A structure). The ICT character of this band was confirmed by its solvatochromic properties using solvents with different dielectric properties, and this behavior could be well described by the Lippert-Mataga equation. To explain the solvatochromic behavior, both the magnitude and orientation of the dipole moments in the electronic ground state and in the excited state were analyzed using the theoretical data. According to these data, the change in magnitude of the dipole moments was very small for both transitions but the spatial orientation changed remarkably for the lower energy band ascribed to the ICT band.  相似文献   

13.
The solvent effects on the electronic absorption and fluorescence emission spectra of several coumarins derivatives, containing amino, N,N-dimethyl-amino, N,N-diethyl-amino, hydroxyl, methyl, carboxyl, or halogen substituents at the positions 7, 4, or 3, were investigated in eight solvents with various polarities. The first excited singlet-state dipole moments of these coumarins were determined by various solvatochromic methods, using the theoretical ground-state dipole moments which were calculated by the AM1 method. The first excited singlet-state dipole moment values were obtained by the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga, and Reichardt-Dimroth equations, and were compared to the ground-state dipole moments. In all cases, the dipole moments were found to be higher in the excited singlet-state than in the ground state because of the different electron densities in both states. The red-shifts of the absorption and fluorescence emission bands, observed for most compounds upon increasing the solvent polarity, indicated that the electronic transitions were of π-π* nature.  相似文献   

14.
The orientation of the transition dipole moments for four commonly studied optical transitions of the conjugated polymer polyfluorene have been deduced using polarised spectroscopies, including fluorescence, phosphorescence, and photoinduced absorption in oriented polymer films. The data show that all the transitions except from the phosphorescence are highly polarised parallel to the chain orientation. The phosphorescence in this polyfluorene homopolymer however, has its dominant component orthogonal to the chain orientation. The data are interpreted by regarding shape and electron distribution of the excited states. It has been deduced that the singlet states and higher triplet states are strongly delocalised along the chain whereas the T1 excited state is more localised and has its electron distribution oriented orthogonal to the chain.  相似文献   

15.
The long-wavelength absorption of eight 9-(phenoxycarbonyl)-acridines and the 10-H-9-(phenoxycarbonyl)-acridinium and 10-methyl-9-(phenoxycarbonyl)-acridinium cations derived from them, substituted with an alkyl or trifluoroalkyl group at the benzene ring, occurs above 300 nm as the superposition of four bands. Three of these bands occupy comparable positions (expressed in nm) in all the compounds; the fourth one, however, changes position, appearing in neutral molecules as a long-wavelength shoulder below 400 nm, but in cations as an almost separate band above 400 nm. The weak fluorescence resulting from excitation within the long-wavelength absorption band is red-shifted relative to absorption, such that Stokes shifts are similar for both neutral molecules and cations. Stokes shifts tend to increase with the orientational polarisability of a medium. Computations predict that long-wavelength electronic transitions are accompanied by structural changes in molecules. They also indicate that such transitions are followed by roughly uniform electron density changes in whole molecules accompanied by small changes in their dipole moments, which accounts for the weak absorption in the long-wavelength region. The predicted radiative and non-radiative deactivation rate constants suggest the occurrence of efficient spin-orbital coupling in the molecules investigated, which is the cause of the relatively low fluorescence quantum yields. Apart from the cognitive significance of these investigations, the results demonstrate that absorption of radiation by 10-methyl-9-(phenoxycarbonyl)-acridinium cations above 400 nm may influence their chemiluminescence output.  相似文献   

16.
A set of analytical potential energy surfaces (PESs) for six singlet excited states of NOCl are constructed based on multireference configuration interaction calculations. The total absorption cross section at the energy range of 2-7 eV is calculated by quantum dynamics calculations with the present PESs and transition dipole moments. The calculated absorption spectrum agrees well with the experiment. It is also found that the A band with the absorption maximum at 6.3 eV is attributed to the transition to the 4 1A' state, though the excitations to the 3 1A' and 3 1A" states contribute to the spectrum at the energy range between 4 and 5 eV. The spin-forbidden transitions are concluded to be negligibly weak. The mechanism of photodissociation reaction at the energy region corresponding to the A band is examined. The nonadiabatic transition rates from the 4 1A' state to lower singlet and triplet states are estimated by Fermi's golden rule, and the transitions to the 1 1A' and 3 1A' states induced by vibronic coupling are found to be the predominant dissociation pathways. The experimentally observed energy dependence of the recoil anisotropy of the fragments is discussed based on the calculated nonadiabatic transition rates.  相似文献   

17.
The analysis of electron structure of yttrium(III) complexes with cinnamic and quinaldic acids was carried out. Electron transitions were assigned, and influence of the nature of frontier orbitals on the position of absorption bands in the electron spectra was revealed. The TD-DFT calculation has shown that different ratios of intensities of ππ* and nπ* bands in the electron absorption spectra of the compounds are caused by different natures of frontier orbitals of the complexes. It was found that dipole moments of both complexes increase upon photoexcitation, greater changes being observed in Y(III) quinaldate. The reason of the greater Stokes shift of Y(III) quinaldate was established.  相似文献   

18.
The multireference Spin-Orbit (SO) Configuration Interaction (CI) method in its Lambda-S Contracted SO-CI (LSC-SO-CI) version is employed to calculate potential energy curves for the ground and low-lying excited states of the ArH(+) cation. For the first time, electric dipole moments are also computed in the approach, including SO coupling for transitions to the states responsible for the first absorption continuum (A-band) of ArH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that absorption in the A-band is dominated by the parallel A(1)Sigma(+)<--X(1)Sigma(+) transition. In the low-energy part of the band (<95 x 10(3) cm(-1)) the absorption is caused by the perpendicular B(1)Pi<--X(1)Sigma(+) excitation, but transitions to the b(3)Pi(0(+),1) states are also not negligible. The branching ratio Gamma for the final photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or= 10(5) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Ar(+)((2)P(1/2)) ions, and thus leads to the inverse population of the Ar(+)((2)P(1/2)-(2)P(3/2)) ion states.  相似文献   

19.
We consider the electronic transition between the split components of the excited electronic doublet of a dimer species when the monomer species have permanent dipole moments. We show that the transition moment is given in terms of the permanent dipole moments of the ground and excited states of the monomers. Extension to ionic dimers and transitions between exciton bands in molecular crystals are suggested.  相似文献   

20.
Multireference spin-orbit configuration interaction calculations of transition moments from the X A1 ground state to the 3Q0+, 3Q1, and 1Q excited states responsible for the A absorption band of CH3I are reported and employed for an analysis of the photofragmentation in this system. Contrary to what is usually assumed, the 3Q0+(A1), 3Q1(E), and 1Q(E)<--X A1 transition moments are found to be strongly dependent on the C-I fragmentation coordinate. The sign of this dependence is opposite for the parallel and perpendicular transitions, which opens an opportunity for vibrational state control of the photodissociation product yields. The computed absorption intensity distribution and the I* quantum yield as a function of excitation energy are analyzed in comparison with existing experimental data, and good agreement between theory and experiment is found. It is predicted that significantly higher I* quantum yield values (>0.9) may be achieved when vibrationally hot CH3I molecules are excited in the appropriate spectral range. It is shown that vibrational state control of the I*/I branching ratio in the alkyl (hydrogen) iodide photodissociation has an electronic rather than a dynamic nature: Due to a different electron density distribution at various molecular geometries, one achieves a more efficient excitation of a particular fragmentation channel rather than influences the dynamics of the decay process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号