首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy has been utilized to show the increase of single-walled carbon nanotubes (SWCNTs) content in commercial grade samples synthesized by the chemical vapour deposition (CVD) technique with a minimization of impurities using both hydrochloric acid treatment and surfactant purification. Surfactant purification methods proved to be the most effective, resulting in a three-fold increase in the percentage of SWCNTs present in the purified product as determined by Raman spectroscopy.  相似文献   

2.
3.
4.
We report herein the template-directed synthesis, characterization, and electric properties of single-walled carbon nanotube- (SWNT-) based coaxial nanowires, that is, core (SWNT)-shell (conducting polypyrrole and polyaniline) nanowires. The SWNTs were first dispersed in aqueous solutions containing cationic surfactant cetyltrimethylammonium bromide (CTAB) or nonionic surfactant poly(ethylene glycol) mono-p-nonyl phenyl ether (O pi-10). Each individual nanotube (or small bundle) was then encased in its own micellelike envelope with hydrophobic surfactant groups orientated toward the nanotube and hydrophilic groups orientated toward the solution. And thus a hydrophobic region within the micelle/SWNT (called a micelle/SWNT hybrid template) was formed. Insertion and growth of pyrrole or aniline monomers in this hybrid template, upon removal of the surfactant, produce coaxial structures with a SWNT center and conducting polypyrrole or polyaniline coating. Raman and Fourier transform infrared (FTIR) spectroscopy and scanning (SEM) and transmission (TEM) electron microscopy were used to characterize the composition and the structures of these coaxial nanowires. The results revealed that the micellar molecules used could affect the surface morphologies of the resulting coaxial nanowires but not the molecular structures of the corresponding conducting polymers. Electric properties testing indicated that the SWNTs played the key roles in the conducting polymer/SWNT composites during electron transfer in the temperature range 77 K to room temperature. Compared with the SWNT network embedded in the conducting polymers, the composites within which SWNTs were coated perfectly by the identical conducting polymers exhibited higher barrier heights during electron transfer.  相似文献   

5.
The interaction mechanism of threonine (Thr) on the sidewall of (8, 8) single‐walled carbon nanotubes (CNTs) was investigated by density functional tight‐binding method. All the functional groups of Thr were used to interact with the surface of CNT. The structural parameters were analyzed to identify the noncovalent interactions, and the binding energy and strain energy were used to indicate the binding properties. We found that the CH/π interactions play more important roles than NH/π and OH/π interactions in stabilizing the complex structures. Furtherly, the charge transfer properties, density of states (DOS) and partial density of states, and highest occupied molecular orbitals and lowest unoccupied molecular orbitals were also studied to illustrate the adsorbed interactions. The results show that the DOS structure of CNT could be modified by the adsorption of Thr, and, therefore, the conductivity of CNT will be improved by introducing proper amino acids. Our data should be helpful for the design of biocompatible molecules for CNT modification. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The benzidine photodegradation process was studied using UV/Vis spectroscopy and electrospray ionization mass spectrometry (ESI-MS) combined with collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS). Mass spectrometry was used to characterize benzidine and to identify and characterize possible degradation products and intermediates. The MS data showed that benzidine is quite persistent in aqueous medium. Moreover, the MS analysis enabled us to propose the following three degradation products/intermediates: 4'-nitro-4-biphenylamine, tetrahydroxybiphenyl and 4,4'-dinitrobiphenyl. For the benzidine molecular ion and protonated molecule and for the protonated molecules of the degradation products/intermediates detected, fragmentation patterns are proposed based on CID and MS/MS data. For the photodegradation process different catalysts were used, namely the commercial TiO2 Degussa P25, and the laboratory-prepared ZnO, TiO2 anatase and a titanium-zinc oxide with a perovskite type structure. Comparison of the different catalysts showed that degradation was favoured with the commercial TiO2. Nevertheless, the other catalysts appear to be promising and economic alternatives for potential future remediation studies.  相似文献   

7.
We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12–6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in relatively smaller systems consisting of about five hundred molecules. We dedicate this work to Professor Debashis Mukherjee on his 60th Birthday.  相似文献   

8.
The field emission characteristics of the body for single-walled carbon nanotubes (SWNTs) are investigated by use of the first-principles calculations. We find that field emission property, chemical stability and binding energy of the tube body with the practical diameter are less sensitive to the tube diameter, morphology, and conductive characteristic, and conclude the emission features of the body film: consistence in emission sites, uniformity in emission energy distribution, predictability in emission effects and high emission stability, which are similar to those of graphite sheet or diamond film. These unique features guarantee the tube body to be applicable to flat panel displays with the same picture quality, cylindrical cathode and linear emitter.  相似文献   

9.
The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.  相似文献   

10.
Based on first-principles calculations, we investigate the structure and electronic properties of a carbon atomic chain in finite length inserted into half of a single walled carbon nanotube (SWCNT), which we called half chain@SWCNT or more generally HCS. Comparing the optimized structure of HCS with that of the same chiral indices SWCNT and all carbon chain inserted SWCNT, we find that the geometry of the tube in HCS is slightly altered due to the weakly interacting between the inserted chain and the outer tube wall of HCS. Our calculation of band structure indicates that the armchair (5, 5) HCS exhibits metallic character, which is as that of (5, 5) SWCNT and all carbon chain inserted (5, 5) SWCNT. The zigzag (8, 0) and (9, 0) HCSs have small change in the energy gap compared to the corresponding pristine ones. Due to the downshift of conduction bands originating from the carbon chain, the calculation of band structure shows that chiral (6, 4) HCS is a semiconductor system with a small band gap of 0.94 eV, less than 1.125 eV in pristine SWCNT. The studied HCSs with unique structure and electronic property may construct a new generation nanoscale junctions without the usual heptagon–pentagon defect pair considerations.  相似文献   

11.
Quantum chemical calculations of the electronic structure of tamoxifen molecule interacting with an open end of a single-walled carbon nanotube (SWCNT) were carried out and the effects of solvents (water, methanol, DMSO, acetone) on the 1H, 13C, 15N, and 17O NMR parameters were studied by the GIAO-HF/STO-3G, GIAO-HF/3-21G, and GIAO/B1LYP/3-21G methods using the GAUSSIAN-98 program. The largest σiso value was obtained for acetone, whereas the smallest one for water. The opposite trend was obtained for the shielding asymmetry η. According to calculations, atoms at interaction site bear negative charges. The O(43) and N(38) atoms produce negative charge because they have high electron affinities. The dipole moment of tamoxifen molecule in different solvents increases with increasing the dielectric constant of the solvent. The largest dipole moment value was obtained for water by the B1LYP/3-21G method.  相似文献   

12.
In this article, we explore the efficiency of using a coupled genetic algorithm (GA) and density functional theory (DFT) based strategy to evaluate probable structures of (H(2) O)(n) F(-) micro-clusters, with n = 1 - 6. We use the stochastic optimization technique of GA to arrive at structures of the cluster systems and once the structures are obtained, do a DFT calculation with the optimized coordinates from the GA calculation as input to get the infra-red spectrum of all the systems. The results of our work closely resembles the pure quantum chemical results obtained by Baik et al. (J Chem Phys 1999, 110, 9116-9127).  相似文献   

13.
Recently we reported noncovalent functionalization of nanotubes in an aqueous medium with ionic liquid-based surfactants, 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), resulting in positively charged single-wall carbon nanotube (SWNT)-1,2 composites. Thiolation of SWNTs with 2 provides their self-assembly on gold as well as templating gold nanoparticles on SWNT sidewalls via a covalent -S-Au bond. In this investigation, we studied the electronic structure, intermolecular interactions, and packing within noncovalently thiolated SWNTs and also nanotube alignment in the bulk of SWNT-2 dried droplets and self-assembled submonolayers (SAMs) on gold by high-resolution X-ray photoemission spectroscopy (HRXPS), C K-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). HRXPS data confirmed the noncovalent nature of interactions within the nanocomposite of thiolated nanotubes. In PM-IRRAS spectra of SWNT SAMs on gold, the IR-active vibrational SWNT modes have been observed and identified. According to PM-IRRAS data, the hydrocarbon chains of 2 are oriented with less tilt angle to the bare gold normal in a SAM deposited from an SWNT-2 dispersion than those of 1 deposited from an SWNT-1 dispersion on the mercaptoethanesulfonic acid-primed gold. For both the dried SWNT-2 bulk and the SWNT-2 SAM on gold, the C K-edge NEXAFS spectra revealed the presence of CH-pi interactions between hydrocarbon chains of 2 and the pi electronic nanotube structure due to the highly resolved vibronic fine structure of carbon 1s --> R*/sigma*C-H series of states in the alkyl chain of 2. For the SWNT-2 bulk, the observed splitting and upshift of the SWNT pi* orbitals in the NEXAFS spectrum indicated the presence of pi-pi interactions. In the NEXAFS spectrum of the SWNT-2 SAM on gold, the upshifted values of the photon energy for R*/sigma*C-H transitions indicated close contact of 2 with nanotubes and with a gold surface. The angle-dependent NEXAFS for the SWNT-2 bulk showed that most of the molecules of 2 are aligned along the nanotubes, which are self-organized with orientation parallel to the substrate plane, whereas the NEXAFS for the SWNT-2 SAM revealed a more normal orientation of functionality 2 on gold compared with that in the SWNT-2 bulk.  相似文献   

14.
A Quantum Mechanics (QM) is used for investigated the nature of metals transport and interaction with single-walled carbon nanotubes (SWCNTs) inter membranes. Metal species can be transported actively by a combination of SWCNT-membranes conducting channels that have been used for bio-molecular and detection. This study is based on the interaction of Na, Mg, Al, and Si with the structural features of SWCNTs in the ground state ab initio, HF theory and DFT calculation have been performed with the program Gaussian A7 package suite of programs. We used HF and DFT (B3LYP) method for calculation energy, chemical shift nucleus magnetic resonance and proportion thermodynamic by DFT-IR and DFT-NMR for RWCNT in absence and presence metals. The basis set used 6-31G and 6-31G* that increasing electronegativity metals increased the total energy. The proportion SWCNTs were changed by them. In this study presented a comprehensive on effects of metals on SWCNTs, which are on theirs electronic structure, and transfer of charge from metal to SWCNTs. The results are presented for T = 310 K, the temperature of human’s body.  相似文献   

15.
The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.  相似文献   

16.
We present a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition. The metal catalyst nanoparticles used to promote nanotube growth are removed using a water plasma treatment in combination with an acid attack. The final integrated microelectrode-based devices present excellent electrocatalytic properties that make them suitable for electrochemical applications. The presented methodology enables the construction of highly regular and dense vertically aligned carbon nanotube (VACNT) forests that can be confined within the patterned bounds of a desired surface. These VACNT electrodes display very low capacitive currents and are amenable to further chemical modifications.  相似文献   

17.
The morphology, structure, and properties of polyethylene terephthalate (PET)/Carbon Nanotubes (CNT) conductive nanoweb were studied in this article. Nanocomposite nanofibers were obtained through electrospinning of PET solutions in trifluoroacetic acid (TFA)/dichloromethane (DCM) containing different concentrations and types of CNTs. Electrical conductivity measurements on nanofiber mats showed an electrical percolation threshold around 2 wt % multi‐wall carbon nanotubes (MWCNT). The morphological analysis results showed smoother nanofibers with less bead structures development when using a rotating drum collector especially at high concentrations of CNTs. From crystallographic measurements, a higher degree of crystallinity was observed with increasing CNT concentrations above electrical percolation. Spectroscopy results showed that both PET and CNT orientation increased with the level of alignment of the nanofibers when the nanotube concentration was below the electrical percolation threshold; while the orientation factor was reduced for aligned nanofibers with higher content in CNT. Considerable enhancement in mechanical properties, especially tensile modulus, was found in aligned nanofibers; at least six times higher than the modulus of random nanofibers at concentrations below percolation. The effect of alignment on the mechanical properties was less important at higher concentrations of CNTs, above the percolation threshold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2052–2064, 2010  相似文献   

18.
The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule.  相似文献   

19.
A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at ?0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at ?0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.  相似文献   

20.
An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4'-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号