首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-erythro sphingomyelines (SM) having a defined acyl chain were synthesized with sphingosylphosphorylcholine as a starting material, and both a structural property and its relating phase transition phenomenon were compared between a symmetric chain length SM (palmitoyl-SM: C16-SM) and asymmetric chain length SMs (behenoyl-SM: C22-SM, lignoceryl-SM: C24-SM). Furthermore, effect of increasing a content of asymmetric chain SMs in the mixture systems of C22-SM/C16-SM, and C24-SM/C16-SM was investigated. The present calorimetric and electron microscopic studies revealed that (1) The main transition enthalpy is smaller for the asymmetric chain SMs than for the symmetric chain SM by about 3 kJ mol−1, although the acyl chain length is longer for the former than for latter; (2) Relatively small size vesicles (100∼200 nm diameters) surrounded by one or more lamellae are observed for the asymmetric chain SMs, in contrast to large multilamellar vesicles (1500∼2500 nm diameters) having at least fifteen stained lamellae for the symmetric chain SM and (3) The coexisting asymmetric chain SMs cause the decrease in size and multiplicity for the MLV of the symmetric chain SM, simultaneously with a decrease in the main transition enthalpy.  相似文献   

2.
《Supramolecular Science》1998,5(5-6):619-622
Asymmetric vesicles were prepared layer by layer from reverse micelles. The aqueous solution was first entrapped into reverse micelles prepared from lipid, then these reverse micelles penetrated the monolayer formed by another kind of amphiphilic agent at organic solvent/water interface by centrifugation and were assembled spontaneously by the second layer to form asymmetric vesicles. In general, the diameters of the vesicles ranged from 30 to 100 nm. A fluorescein quenching experiment showed that asymmetric vesicles with the inner layer being lipid and the outer layer being single-chain amphiphilic molecules, [(bpy)2 Ru(diazafluorenone) (CH2)15CH3](PF6)2, were successfully prepared. The half-life of flip–flop of the amphiphilic molecules between inner and outer layers was estimated to be about 17 days.  相似文献   

3.
The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C12/C12, and the other highly asymmetric with 2C8/C16 chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C8/C16 system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy).  相似文献   

4.
In this paper, we investigate the effects of the hydrocarbon chain length of lipid molecules on the permeation process of small molecules through lipid bilayers. We perform molecular-dynamics simulations using three kinds of lipid molecules with different chain length: dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmiltoylphosphatidylcholine. Free-energy profiles of O2, CO, NO, and water molecules are calculated by means of the cavity insertion Widom method and the probability ratio method. We show that the lipid membrane with longer chains has a larger and wider energy barrier. The local diffusion coefficients of water across the bilayers are also calculated by the force autocorrelation function method and the velocity autocorrelation function method. The local diffusion coefficients in the bilayers are not altered significantly by the chain length. We estimate the permeability coefficients of water across the three membranes according to the solubility-diffusion model; we find that the water permeability decreases modestly with increasing chain length of the lipid molecules.  相似文献   

5.
Dissipative particle dynamics is used to extract the material parameters (bending and area stretch moduli) of a bilayer membrane patch. Some experiments indicate that the area stretch modulus of lipid vesicles varies little as the chain length of the lipids composing the bilayer increases. Here we show that making the interactions between the hydrophilic head groups of the model amphiphiles proportional to the hydrophobic tail length reproduces the above result for the area stretch modulus. We also show that the area stretch modulus of bilayers composed of amphiphiles with the same number of tail beads but with asymmetric chains is less than that of bilayers with symmetric chains. The effects on the bilayer density and lateral stress profiles of changes to the amphiphile architecture are also presented.  相似文献   

6.
A charge transfer (CT) mediated two‐component, multistimuli responsive supergelation involving a L ‐histidine‐appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene‐diimide (Asym‐NDI) derivative as an acceptor in a 2:1 mixture of H2O/MeOH was investigated. Asym‐NDI alone self‐assembled into pH‐responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular dichroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling “pearls‐on‐a‐string” from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.  相似文献   

7.
Recent studies on the deformation of lipid vesicles which is a simple model of biological membranes, and the factors that influence it are reviewed. In homogeneous vesicles, the deformation from spherical to various shapes was observed by adjusting the temperature and the osmotic pressure. This is mainly explained by a balance between the bending elasticity and the area difference energy. In phase separated vesicles, the effect of line tension makes a significant contribution to the deformation. In addition, asymmetric distribution of lipid molecules in bilayers caused by lipid sorting determines deformation behaviors including budding, pore, tube, adhesion, and self-reproduction. The change in membrane curvature due to shielding of lipid charges by electrolytes, proteins, peptides, and solid nanoparticles was also reviewed.  相似文献   

8.
After adding cholesterol, the sphingosine backbones (red) of the three nature SMs become more ordered, and the N-linked acyl chain (blue) remains unaltered.  相似文献   

9.
The geometry of surrounding water molecules on the side chain of glycine, alanine, α-aminoisobutyric acid, α-aminobutyric acid, valine, and related hydrocarbons has been analyzed combining bottom-up and quantum chemical methodologies. To minimize the cavity size and to prevent water-water hydrogen bonding loss, the water molecules adopt a shape, resembling the one found in crystal structure of gas clathrate hydrates, with water molecules tangentially oriented to the surface of hydrophobic side chain. The cage is directly hydrogen bonded to the backbone's polar groups, thus hydration shells around hydrophobic and hydrophilic groups are folded together in amphiphilic molecules. The hydrophobe enclathration implies a substantial freedom degree reduction which makes it entropically disfavored. This disadvantageous entropic contribution is partially compensated by the favorable van der Waals interactions with guest in stabilizing clathrate hydrate formation. The water shell around the side chain relates intimately with the side-chain rotational isomerism. Present data are correlated with the experimental determined populations of the three rotamers, yielding promising results for both α-aminobutyric acid and valine.  相似文献   

10.
This paper reports that structurally positively charged layered double hydroxides (LDHs) nanoparticles induce the vesicle formation in a mixture of a zwitterionic surfactant, lauryl sulfonate betaine (LSB), and an anionic surfactant, sodium dodecyl benzenesulfonate (SDBS). The existence of vesicles was demonstrated by negative‐staining (NS‐TEM) and freeze‐fracture (FF‐TEM) transmission electron microscopy and confocal laser scanning microscopy (CLSM). The size of vesicles increased with the increase of volume ratio (Q) of Mg3Al‐LDHs sol to the SDBS/LSB solution. A new composite of LDHs nanoparticles encapsulated in vesicles was formed. A possible mechanism of LDHs‐induced vesicle formation was suggested. The positive charged LDHs surface attracted negatively charged micelles or free amphiphilic molecules, which facilitated their aggregation into a bilayer membrane. The bilayer membranes could be closed to form vesicles that have LDHs particles encapsulated. It was also found that an adsorbed compound layer of LSB and SDBS micelles or molecules on the LDHs surface played a key role in the vesicle formation.  相似文献   

11.
The architecture of the plasma membrane is not only determined by the lipid and protein composition, but is also influenced by its attachment to the underlying cytoskeleton. Herein, we show that microscopic phase separation of “raft‐like” lipid mixtures in pore‐spanning bilayers is strongly determined by the underlying highly ordered porous substrate. In detail, lipid membranes composed of DOPC/sphingomyelin/cholesterol/Gb3 were prepared on ordered pore arrays in silicon with pore diameters of 0.8, 1.2 and 2 μm, respectively, by spreading and fusion of giant unilamellar vesicles. The upper part of the silicon substrate was first coated with gold and then functionalized with a thiol‐bearing cholesterol derivative rendering the surface hydrophobic, which is prerequisite for membrane formation. Confocal laser scanning fluorescence microscopy was used to investigate the phase behavior of the obtained pore‐spanning membranes. Coexisting liquid‐ordered‐ (lo) and liquid‐disordered (ld) domains were visualized for DOPC/sphingomyelin/cholesterol/Gb3 (40:35:20:5) membranes. The size of the lo‐phase domains was strongly affected by the underlying pore size of the silicon substrate and could be controlled by temperature, and the cholesterol content in the membrane, which was modulated by the addition of methyl‐β‐cyclodextrin. Binding of Shiga toxin B‐pentamers to the Gb3‐doped membranes increased the lo‐phase considerably and even induced lo‐phase domains in non‐phase separated bilayers composed of DOPC/sphingomyelin/cholesterol/Gb3 (65:10:20:5).  相似文献   

12.
We present a simple, rapid, and robust method for preparing asymmetric cell-sized lipid bilayer vesicles using water-in-oil (W/O) microdroplets transferred through an oil-water interface. The efficiency for producing cell-sized model membranes is elucidated in relation to the vesicular size and the weight of contained water-soluble molecules. We demonstrate the biological asymmetric nature and the formation of lipid raft microdomain structures using fluorescence microscopy.  相似文献   

13.
The distribution of a semiflexible chain in the volume of two interconnected spherical cavities of equal size has been investigated by using Monte Carlo simulations. The chain possessed an extension exceeding that of the cavity, leading to large probabilities of translocated states despite the entropic penalty of passing the narrow passage. Furthermore, an asymmetric state with unequal subchain lengths in the two cavities was more favorable than the symmetric state. The preference for the asymmetric state is driven by the bending energy. Basically, in the symmetric state both subchains are forced to be bent, whereas in the asymmetric case only one of the subchains must bend, leading to an overall smaller bending penalty and overall smaller free energy of the asymmetric state. These results are in contrast to the entropy-controlled partitioning of polymers into confinement and the symmetric translocation state appearing for flexible polymers.  相似文献   

14.
Solubilization of different zwitterionic phospholipid vesicles structures such as L--phosphatidylcholine (PC) and 1,2-didecanoyl-sn-glycero-3-phosphocholine (DPC) have been studied in aqueous bulk by using zwitterionic surfactant dimethylhexadecylammoniopropanesulfonate (HPS). This has been done by studying the aggregation of HPS in pure water and in the presence of 7–36 M of fixed concentrations of each lipid with the help of pyrene fluorescence intensity (I 1/I 3) measurements. The fluorescence measurements showed that HPS monomers undergo two kinds of aggregation process, which were identified by the three breaks in a plot of pyrene fluorescence versus HPS concentration. The first two breaks, C 1 and C 2, indicate the onset and completion of vesicle solubilization respectively, upon incorporation of HPS monomers into the vesicles and led to solubilization in the form of mixed micelles. This process was not clearly visible at low lipid concentration. We evaluated the partition coefficient (K), which defines the degree of partitioning of surfactant monomers into the vesicles with respect to the aqueous medium. A high K value of HPS-lipid aggregates indicates the stronger interactions between surfactant and lipid vesicles. The K values evaluated for PC and DPC are quite close to each other, which indicates that K values were independent of phospholipid chain length.  相似文献   

15.
The H-shaped block copolymers (PTMSPMA)2-PEG(PMPSTMSPMA)2 with two compositions, (EG)91-b-(TMSPMA)92 and (EG)455-b-(TMSPMA)176 have been successfully synthesized by atom transfer radical polymerization (ATRP) of tri(methoxylsilyl)propyl methacrylate (TMSPMA) at room temperature in methanol. The initiation system applied was composed of 2,2-bis(methylene α-bromoisobutyrate)propionyl terminated poly(ethylene glycol) (Br2PEGBr2) with M n = 4000 or 2000, CuBr and 2,2′-bipyridine. The macroinitiator, Br2PEGBr2, was prepared by the reaction of two hydroxyl groups terminated PEG with 2,2-bis(methylene α-bromoisobutyrate)propionyl chloride. The NMR spectroscopy and GPC measurements were used to characterize the structure and molecular weight and molecular weight distribution of the resultant copolymers. The H-shaped block copolymers Sam 1 and Sam 2 were self-assembled in DMF/water mixtures and then the trimethoxysilyl groups in PTMSPMA were cross-linked by condensation reaction in the presence of triethylamine. Stable large-compound vesicles with 10 nm diameter of cavities were formed for Sam 1 which contains a short PEG chain. However, the self-assembling of the Sam 2 in the selective solvents resulted in big vesicles aggregates. These two different morphologies of aggregates are attributed to their relative chain length of water soluble PEG. The vesicles formed from Sam1 with short PEG chains have big surface energy which will lead them to self-assemble further, forming large-compound vesicles. __________ Translated from Acta Polymerica Sinica, 2007, 10: 974–978 [译自: 高分子学报]  相似文献   

16.
Polyurethanes were synthesized based on an amorphous polyester polyol, and different chain extenders, comparing the universally accepted symmetric chain extender (1,4‐butanediol) with an asymmetric (1,2‐propanediol) chain extender. The effect of incorporating a crystalline polyester polyol polyhexamethylene adipate (PHMA) was investigated. The resulting morphologies and tensile properties are dramatically different. Based on the thermal and infrared data obtained, the sample with the symmetric chain extender exhibits a phase‐separated morphology, which can change as a function of time and temperature. Conversely, the polyurethane with the asymmetric chain extender has a phase mixed morphology that remains stable under the same experimental conditions. Incorporating crystalline PHMA resulted in a substantial change in the mechanical properties of the materials, especially for the copolymer comprising asymmetric chain extender. The rate of crystallization and the degree of crystallization achieved depended on the type of chain extender used. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018  相似文献   

17.
Conformational elasticity theory of chain molecules   总被引:2,自引:0,他引:2  
This paper develops a conformational elasticity theory of chain molecules, which is based on three key points: (i) the molecular model is the rotational isomeric state (RIS) model; (ii) the conformational distribution function of a chain molecule is described by a function of two variables, the end-to-end distance of a chain conformation and the energy of the conformation; (iii) the rule of changes in the chain conformational states during deformation is that a number of chain conformations would vanish. The ideal deformation behavior calculated by the theory shows that the change in chain conformations is physically able to make the upward curvature of the stress-strain curve at the large-scale deformation of natural rubber. With the theory, different deformation behaviors between polymers with different chemical structures can be described, the energy term of the stress in the deformations can be predicted, and for natural rubber the fraction of the energy term is around 13%, coinciding with the experi  相似文献   

18.
Atomic force microscopy (AFM)-based single polymer chain pulling experiments have been used to study the structural transitions of individual homopolymer chains in water. Polystyrene (PS) showed a three-regime force-extension profile exhibiting a force plateau reminiscent of a first-order transition, as predicted theoretically, whereas poly(methyl methacrylate) (PMMA) showed a characteristic saw-tooth pattern reminiscent of multidomain disassembly behavior. The two distinct structural transtions provide fingerprints for the individual homopolymers, which can be used to identify individual blocks of symmetric and asymmetric PS- b-PMMA diblock copolymer chains.  相似文献   

19.
The stability of nanocarriers in physiological environments is of importance for biomedical applications. Among the existing crosslinking approaches for enhancing the structural integrity and stability, photocrosslinking has been considered to be an ideal crosslinking chemistry, as it is non-toxic and cost-effective, and does not require an additional crosslinker or generate by-products. Meanwhile, most current temperature-responsive nanocarriers are designed and synthesized for drug release by increasing temperature. However, heating may induce cell damage during triggered drug release. Therefore, lowering temperature-triggered nanocarriers need to be developed for drug delivery and safe drug release during therapeutic hypothermia. In this study, we prepared an amphiphilic block copolymer, poly(ethylene oxide)-block-poly[N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin]-block-poly(acrylic acid) [PEO43-b-P(NIPAM71-stat-CMA8)-b-PAA13], by reversible addition fragmentation chain transfer (RAFT) polymerization. Successful synthesis of the polymer was verified by proton nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC). The copolymers self-assembled into vesicles in aqueous solution, with the P(NIPAM-stat-CMA) block forming an inhomogeneous membrane and the PEO chains and PAA chains forming mixed coronas. The cavity of this vesicle could be utilized to load hydrophilic drugs. The CMA groups could undergo photocrosslinking and enhance the stability of vesicles in biological applications, and the PNIPAM moiety endowed the vesicle with temperature-responsive properties. Upon decreasing the temperature, the vesicles swelled and released the loaded drugs. The size distribution and morphology of the vesicles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) experiments. After staining with phosphotungstic acid, the hollow morphology of the vesicles with a phase-separated inhomogeneous membrane was observed by TEM and SEM. The DLS results showed that the hydrodynamic diameter of the vesicles was 208 nm and the polydispersity was 0.075. The size of the vesicles observed by TEM was between 180 and 200 nm, which was in accordance with that measured by DLS. To verify the drug loading capacity and controlled release ability of the vesicle, a water-soluble antibiotic was encapsulated in the vesicles. The experimental results showed that the drug loading content was 10.4% relative to the vesicles and the drug loading efficiency was approximately 32.7%. For vesicles containing the same amount of antibiotics, the release rate at 25 ℃ was 35% higher than that at 37 ℃ after 12 h in aqueous solution. Overall, this photocrosslinked vesicle with temperature-responsive properties facilitates lowering temperature-triggered drug release during therapeutic hypothermia.  相似文献   

20.
Cubic liquid crystalline nanoparticles (cubosomes) of bicontinuous nature with internal networks of water channels have received great interests in nanomedicine applications, particularly as potential vehicle for loading and release of therapeutic agents. These nanoparticles have been most commonly produced using monoolein and phytantriol. In this study, we explore the use of a Guerbet branched chain glycolipid, namely 2-hexyl-decyl-β-D glucopyranoside (β-Glc?OC10C6), as a new and alternative material for cubosomes production. The fully hydrated glycolipid assumes a reverse bicontinuous cubic liquid crystal phase of an Ia3d space group with lattice parameter of ca. 74 Å, as confirmed using a small-angle X-ray scattering. Dynamic light scattering and a conventional transmission electron microscopy were used to investigate the average size and morphology of the cubosomes. The effectiveness of Poloxamer 407 (stabiliser typically used in other cubosome systems against aggregations and particle coalescence) in providing steric stabilisation of the glycolipid cubosomes was assessed through visual assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号