首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
运用TPO,XRD,BET,O2-TPD,H2-TPR,XPS等技术,研究了在CeO2中引入不同Mn含量对催化剂表面氧性质的影响,并重点探讨了吸附于氧空位上的原子吸附氧O-与催化碳烟燃烧活性的关联。结果表明:将Mn中引入CeO2后,MnOx-CeO2晶格中可形成较CeO2更多的氧空位,并有利于氧的活化和迁移,生成了较多原子吸附氧O-;MnOx(0.4)-CeO2在碳烟起燃温度区间有最多的原子吸附氧O-,其碳烟起燃活性最高,对应的起燃温度是346℃,比无催化剂时降低了111℃,比CeO2降低了35℃。  相似文献   

2.
采用浸渍法制备了RuO2/γ-Al2O3和RuO2-CeO2/γ-Al2O3催化剂,利用XRD,XPS和ESR分析了催化剂的结构,并研究了湿式氧化降解苯酚的活性.结果表明,两种催化剂表面RuO2均有良好的分散性,并且催化剂表面存在氧空位和化学吸附氧,CeO2的掺杂使催化剂表面氧空位和化学吸附氧数量增加.两种催化剂对湿式氧化降解苯酚具有良好的催化活性,当苯酚质量浓度为4200mg/L,在150℃和3MPa下,RuO2/γ-Al2O3催化剂湿式氧化降解苯酚反应150min后,苯酚全部被去除,RuO2-CeO2/γ-Al2O3催化剂反应60min后,苯酚的去除率为96%.  相似文献   

3.
以La2O3为助剂,采用共沉淀法制备了具有良好催化活性和热稳定性的CuO/CeO2-La2O3水煤气变换反应催化剂,其中,当La2O3含量为2wt%时,催化剂的催化性能最为优异.同时运用X射线衍射、N2吸附-脱附、Raman光谱、程序升温还原等手段,研究了不同含量的La2O3对CuO/CeO2催化剂微观结构及催化性能的影响.结果表明,La2O3助剂进入了载体CeO2的晶格并对CuO/CeO2催化剂的微观结构和催化性能产生了直接影响,适量La2O3的添加可以抑制CuO和CeO2晶格的长大、增强CuO与CeO2间的相互作用、提高催化剂的比表面积、促进CeO2载体中生成更多的氧空位,CuO/CeO2催化剂的催化活性和热稳定性也明显改善.  相似文献   

4.
采用柠檬酸配合燃烧法和共沉淀法制备了MnOx(0.4)-CeO2催化剂,用于模拟碳烟的燃烧.通过XRD、BET、Raman、H2-TPR、O2-TPD与XPS表征催化剂的结构和表面活性物种,并借助原位拉曼研究碳烟的催化氧化机理.结果表明柠檬酸配合燃烧法制备的MnOx(0.4)-CeO2-CA催化剂中有更多的Mn进入了CeO2的立方萤石结构,比表面积更大,氧空位、Mn4+和Ce4+更多,因而氧化还原性能更好,催化氧化碳烟的活性更高.O-在碳烟的氧化中起重要作用,Mn4+和Ce4+有利于氧化反应的进行,氧空位的增加能提高氧的吸附、迁移和转化能力,促进了碳烟的氧化.反应路径为O-溢出参与碳烟的氧化,同时产生氧空位,部分晶格氧O2-补充O-,气相氧不断吸附到氧空位上得到活化生成O2-,O2-转化为O-(可进一步转化为O2-),O-迁移至碳烟颗粒表面参与反应,生成CO2.  相似文献   

5.
采用水热法和高温煅烧法制备出了3种纯相(α,γ和β)的三维海胆状结构的MnO2微球,并系统地研究了它们的氧还原反应(ORR)性能。研究结果表明,3种MnO2微球的ORR活性依次为:α-MnO2>γ-MnO2>β-MnO2。α-MnO2微球具有最优的ORR性能,其起始电位为0.92 V(vs RHE),在电流密度为-3 mA·cm^-2处的电位为0.77 V(vs RHE)。α-MnO2微球优异的ORR活性主要归因于其具有更多的表面Mn3+和氧空位和更好的导电性。  相似文献   

6.
铈基催化剂因其优异的储放氧能力被广泛地应用于多种催化反应.铈基材料作为催化剂在CH_3SH(甲硫醇)分解反应中的应用也因其产物简单、易处理而受到越来越多的关注.本课题组在前期研究中发现,纳米二氧化铈在CH_3SH催化分解反应中表现出较高的催化活性,然而催化剂却在很短时间内快速失活.为进一步提高铈基氧化物的稳定性,我们通过引入稀土元素对氧化铈催化剂进行改性,结果发现其稳定性明显提高;同时催化剂稳定性与氧空位数量有关,氧空位数量越多,催化剂越稳定.然而,目前关于氧空位对催化CH_3SH分解反应的具体作用,CH_3SH在铈基材料上的失活机理以及氧物种与催化行为之间的相互关系尚不清楚.因此,有必要进一步研究氧空位对提高催化稳定性的贡献并揭示催化行为与氧物种之间的相互关系.本文通过微波辅助柠檬酸络合法制备一系列杂原子(Zr,Y)掺杂的铈基催化剂CeO_2,Ce_(1-x)Z_rxO_2,Ce_(1-x)Y_xO_2-δ(x=0.25,0.50,0.75,1.00),通过考察锆、钇杂原子价态和离子半径对CH_3SH催化分解活性和稳定性的影响来探索铈基催化剂中氧空位的作用及氧物种与催化行为之间的关系.其中,氧物种与催化行为之间的关系可包括两类:(1)表面晶格氧与催化活性之间的关系;(2)体相晶格氧迁移与催化稳定性之间的关系.催化性能和表征结果表明,铈基氧化物中表面晶格氧对CH_3SH催化转化起着至关重要的作用.Ce_(0.75)Zr_(0.25)O_2在CH_3SH的催化分解中表现出更高的催化活性,这是由于Ce_(0.75)Zr_(0.25)O_2有更多的表面晶格氧、活性氧物种及良好的氧化还原性能.Ce_(0.75)Y_(0.25)O_2-δ也表现出更好的催化稳定性,这是由于催化剂中有更多的氧空位,它们会促进体相晶格氧迁移到催化剂表面以补充表面晶格氧.此外,Ce与杂原子之间化学价差极大地影响着表面晶格氧含量以及催化剂中体相氧的迁移率,进而影响铈基催化剂的活性和稳定性.  相似文献   

7.
利用太阳能在温和条件下实现CO2还原反应,不仅可以缓解过度消耗化石能源造成的能源危机,还可以改善诸如温室效应和海洋酸化等环境问题.光热协同催化可以有效降低催化反应温度,具有较大的应用前景.本文利用Ru与暴露TiO2{001}晶面的TiO2载体产生的金属-载体相互作用,经过高温氢气煅烧后,获得具有丰富表面氧空位的Ru/TiO2催化剂.活性测试结果表明,具有丰富表面氧空位的Ru/TiO2表现出优异的CO2甲烷化活性,反应过程中甲烷的TOF值在300°C时可以达到22 h-1,但该催化剂却表现出较差的稳定性,在反应10小时后,甲烷的TOF值逐渐降低到19 h-1.将紫外光引入到Ru/TiO2热催化甲烷化体系中,甲烷的TOF值增加到30 h-1,且兼具高稳定性.热催化反应过程中逐渐消失的表面氧空位和部分氧化的Ru是活性降低的主要原因.在光热协同反应中,光生电子的产生稳定了Ru表面的电子密度,同时也再生了催化剂上表面氧空位,这有效地提高了反应的活性和稳定性.程序升温原位红外和X射线光电子能谱实验结果表明,当催化剂表面具有丰富的表面氧空位时,CO2可以有效地在Ru纳米粒子上解离成CO中间体,随后吸附在Ru上的CO中间体解离成表面碳物种,并加氢产生甲烷.在热催化反应过程中,Ru纳米粒子逐渐被氧化成Ru Ox物种,且表面氧空位被CO中间物种覆盖,降低了催化反应的稳定性.当紫外光引入到上述反应中,催化剂的表面氧空位可有效提高光生载流子的分离能力.TiO2载体产生的光电子转移至Ru表面,稳定了金属Ru纳米粒子的价态.另外,载体产生的光生空穴加速了H2质子化,提高了催化剂对氢气的活化迁移能力,促进了CO中间体的加氢甲烷化反应,进而再生表面氧空位.因此在紫外光照下,兼顾提高了热催化CO2甲烷化的活性和稳定性.值得注意的是,当Ru负载于暴露少量TiO2{001}晶面的TiO2载体上时,产生了强金属-载体相互作用并抑制了H2在催化剂上的吸附活化,不利于产生表面氧空位.因此暴露少量TiO2{001}晶面的Ru/TiO2催化剂也不利于光生载流的产生和分离,这导致热催化或光热协同催化反应活性较低.  相似文献   

8.
通过等体积浸渍法制备了不同K掺杂量的镁铝水滑石复合氧化物(xK/MgAlO),利用X射线衍射光谱及暂态响应、扫描电子显微镜、傅里叶变换红外光谱、X射线光电子能谱及程序升温等技术比较了焙烧和未焙烧的MgAlO形貌结构和晶型的异同,在含硫气氛中研究了K对镁铝水滑石复合氧化物形貌结构和催化碳烟燃烧性能的影响,阐明了反应过程中K掺杂的xK/MgAlO型催化剂降低碳烟起燃温度的关键机制。结果表明,焙烧后的镁铝水滑石3R层状结构消失,出现了尖晶石相,层状结构坍塌变为球形颗粒状;掺杂钾后的催化剂(K/MgAlO)表面活性氧与晶格氧的比例增大,使得氧空位的数量增多,有效提高了催化剂的催化反应活性。在模拟烟气实验中发现掺杂量x=7的(7K/MgAlO)催化剂在含SO_2的混合气中使碳烟的起燃温度降低了127℃,且对NO_x的转化率显著增强。  相似文献   

9.
氧空位对WO3光催化析氧活性影响的研究   总被引:3,自引:0,他引:3  
在500 ℃下用还原性气体H2O / H2对WO3进行不同时间的处理,得到一系列具有不同氧空位的催化剂。采用XRD、XPS、DRS等技术对催化剂进行了表征,并考察了它们的光催化析氧活性。实验结果表明:适量的氧空位能明显提高催化剂的光催化析氧活性。  相似文献   

10.
xAu/α-MnO2催化剂的结构及催化氧化VOCs气体性能   总被引:1,自引:0,他引:1  
以NaOH为沉淀剂,采用沉积-沉淀法制备了α-MnO2负载Au催化剂xAu/α-MnO2(x=1.0%~7.0%,质量分数),利用X射线衍射(XRD)、N2吸附-脱附、H2程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等技术对所得样品进行了表征,并对其催化氧化挥发性有机化合物(VOCs,苯和甲苯)的性能进行了研究.XRD结果表明,负载Au对α-MnO2载体结构影响不大,但对其晶粒大小和比表面积略有影响.随着Au含量的增加,α-MnO2结晶度增强,颗粒增大,Au粒径明显增大.XPS结果表明,随着Au负载量的增加,xAu/α-MnO2的晶格氧(O2-),Mn4+和Au3+的浓度增加.H2-TPR结果表明,由于贵金属的溢氢作用,Au明显提升了xAu/α-MnO2的还原能力,其中3%Au/α-MnO2的还原能力最强.负载Au明显影响xAu/α-MnO2的催化性能,xAu/α-MnO2的催化性能与Au的颗粒分散性、低温还原性能及表面氧物种密切相关,其中3%Au/α-MnO2显示出最佳活性,其催化氧化苯和甲苯的T100分别为280和250℃.  相似文献   

11.
采用吸附相反应技术制备得到了MnOx/CeO2/SiO2催化剂,通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、紫外激光拉曼(Raman)等手段对催化剂进行了表征.HRTEM分析表明活性组分MnOx与CeO2都均匀分布在载体SiO2表面;XRD分析表明Mn3O4特征峰随着CeO2含量的增加逐渐减小至完全消失,CeO2的加入降低了MnOx的结晶程度,增加了MnOx的分散性;Raman光谱表明催化剂表面的Mn离子能够进入CeO2晶格,激发出空穴氧,随着CeO2负载量的增加,催化剂氧空穴浓度先升高后降低.以NH3为还原剂,考评催化剂的NOx低温选择性催化还原(SCR)性能,催化剂催化活性随CeO2负载量增加先升高后降低,与催化剂氧空穴浓度变化规律一致,说明催化剂活性受氧空穴浓度影响,氧空穴浓度升高,催化剂催化活性升高.  相似文献   

12.
LaBO3(B=Fe,Co)中氧的迁移与光催化反应活性   总被引:10,自引:0,他引:10  
以柠檬酸法合成的钙钛矿型复合氧化物LaBO3(B=Fe,Co)为催化剂,对水溶性染料进行光催化降解,实验结果表明,其光催化活性与钙钛矿型结构中氧空位沿BO6八面体棱边以曲线而非直线的迁移机制有关.在光催化氧化过程中,光生电子首先被表面氧空位束缚,再与表面的吸附氧反应生成超氧基(O2-·)而加速对染料分子的降解.钙钛矿型复合氧化物中的氧空位是由氧的迁移产生的,它可以作为电子的陷阱而捕俘电子,并作为氧的吸附中心而提高催化剂表面的吸附氧量.  相似文献   

13.
采用X射线衍射(XRD),氢气程序升温还原(H2-TPR)和无氧脉冲反应评价等研究了MoO3在γ-Al2O3载体表面的分散状态和负载型MoO3/γ-Al2O3催化剂晶格氧物种的丙烷氧化脱氢反应性能.结果表明在γ-Al2O3表面MoO3分散容量的实测值(4.73Mo6 /nm2)与按照"嵌入模型"估算的理论分散容量(4.90 Mo6 /nm2)接近.在分散容量以下,键合在γ-Al2O3表面孤立的Mo-O-Al物种倾向于分散在相邻的空位上且通过Mo-O-Mo化学键相连形成聚合的表面MoOx物种.随着MoO3负载量增加,Mo-O-Al键合方式逐步转变为Mo-O-Mo键合方式,钼离子周围的氧离子活泼性下降,导致丙烷氧化脱氢反应活性下降.超过分散容量以上的Mo离子以晶相形式存在.由于钼离子表面利用率下降,尤其是多层的晶相氧化钼表面Mo-O-Mo物种难以与载体表面铝离子键合,导致与钼离子相结合的氧离子可移动性下降、反应活泼性降低,催化剂的丙烷氧化脱氢反应活性急剧下降.  相似文献   

14.
采用柠檬酸络合法制备LaMnO3和La0.8K0.2MnO3钙钛矿催化剂,运用程序升温氧化(TPO)考察在不同反应气氛下催化燃烧碳烟的活性,并通过XRD,O2-TPD,NO-TPD,XPS以及NO预处理后O2-TPD等技术对催化剂进行表征和分析。结果表明,NO的存在促进了碳烟的催化氧化,但是对LaMnO3和La0.8K0.2MnO3氧化碳烟的促进效果不同。这与催化剂表面氧空位和活性氧物种有密切联系。  相似文献   

15.
利用纳米管钛酸(NTA)和氨水的水热反应制得TiO_(2-x)N_x系列催化剂,并进一步通过热分解-机械研磨的方法在TiO_(2-x)N_x表面附着上银颗粒,制得Ag/TiO_(2-x)N_x系列催化剂.采用X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对催化剂进行了表征和分析.光催化氧化丙烯的实验对比了TiO_(2-x)N_x与Ag/TiO_(2-x)N_x两个系列催化剂的可见光催化活性,考察了氧空位、晶型结构、氮含量和银颗粒对催化剂可见光催化活性的影响.结果表明,催化剂锐钛矿的晶型越好,氧空位含量越高,催化剂的可见光催化活性越好;贵金属银的电子捕获能力使得Ag/TiO_(2-x)N_x的可见光催化活性远高于TiO_(2-x)N_x催化剂.  相似文献   

16.
用水热法制备了不同摩尔比的系列Ce1-xFexO2复合氧化物碳烟燃烧催化剂.采用X射线粉末衍射(XRD)、比表面积(BET)、拉曼光谱(Raman)、H2程序升温还原(H2-TPR)及程序升温氧化反应(TPO)等技术考察了Fe含量对催化剂结构和性能的影响,重点探讨了催化剂表面性质和体相结构与催化活性和稳定性之间的关系.结果表明,Fe3+较难进入CeO2晶格中,部分Fe2O3分散在CeO2表面.铈铁固溶体(氧空位)有利于氧的吸附活化,而表面氧化铁对提高催化剂的抗老化能力起着重要作用.Ce0.8Fe0.2O2有最高的Fe3+掺杂量,有良好分散性的表面Fe2O3,显示出最好的催化活性和稳定性,催化碳烟的起燃温度(Ti)和生成CO2的峰值温度(Tp)分别为262和314℃.Ce0.8Fe0.2O2高温老化后的Ti和Tp仍较低,分别为292和392℃.  相似文献   

17.
纯Fe2O3表面活性位点较少具有较低的催化活性限制了其在多相芬顿催化体系中的应用。通常采用元素掺杂、贵金属负载以及与其它化合物质复合等改性措施来提升催化活性,然而这些措施存在催化剂制备复杂,制备成本高以及催化剂的精细结构难以精准控制等问题。因此,本文提出在α-Fe2O3表面引入氧空位缺陷构筑双活性位点(Fe2+和氧空位)用于促进H2O2分解提高降解污染物降解效率。实验结果发现α-Fe2O3-x-330/H2O2体系具有较宽的pH使用范围(pH=2~10)。当pH=4时,罗丹明B的降解速率常数为0.834 h-1,而且催化剂具有磁性,易回收重复使用。催化机理研究表明氧空位缺陷α-Fe2O3-x催化剂的氧空位和Fe2+两种活性位点均可促进H2O2分解,而且氧空位的引入有利于污染物在催化剂表面的吸附进一步提高催化性能。  相似文献   

18.
用水热法制备了不同摩尔比的系列Ce1-xFexO2复合氧化物碳烟燃烧催化剂. 采用X射线粉末衍射(XRD)、比表面积(BET)、拉曼光谱(Raman)、H2程序升温还原(H2-TPR)及程序升温氧化反应(TPO)等技术考察了Fe含量对催化剂结构和性能的影响, 重点探讨了催化剂表面性质和体相结构与催化活性和稳定性之间的关系. 结果表明, Fe3+较难进入CeO2晶格中, 部分Fe2O3分散在CeO2表面. 铈铁固溶体(氧空位)有利于氧的吸附活化, 而表面氧化铁对提高催化剂的抗老化能力起着重要作用. Ce0.8Fe0.2O2有最高的Fe3+掺杂量, 有良好分散性的表面Fe2O3, 显示出最好的催化活性和稳定性, 催化碳烟的起燃温度(Ti)和生成CO2的峰值温度(Tp)分别为262和314 ℃. Ce0.8Fe0.2O2高温老化后的Ti和Tp仍较低, 分别为292和392 ℃.  相似文献   

19.
采用溶胶凝胶法和浸渍法制备10%Mn/Al_2O_3-TiO_2催化剂,借助TPO、XRD、O_2-TPD、Raman、XPS等手段,考察焙烧温度(450~650℃)对催化剂结构以及氧化NO性能的影响。TPO结果表明催化剂活性随焙烧温度的升高先增后减,其中焙烧温度为550℃时催化剂活性最好。XPS结果显示随着焙烧温度的升高(450~550℃),催化剂表面Mn~(3+)的含量逐渐升高,与催化剂活性的强弱成对应关系,并且催化剂晶格氧含量下降,而表面化学吸附氧从40.9%增加到64.8%。Raman分析显示550℃焙烧时,催化剂表面存在丰富的Mn_2O_3活性物种,并且O_2-TPD分析也表明随着焙烧温度的升高,晶格氧向表面化学吸附氧流动,提高了化学吸附态氧物种的含量。这些结果表明Mn_2O_3可能是NO氧化起主要作用的活性Mn物种,释放更多的表面化学吸附氧物种,将有助于促进NO的催化氧化。  相似文献   

20.
纯Fe2O3表面活性位点较少具有较低的催化活性限制了其在多相芬顿催化体系中的应用。通常采用元素掺杂、贵金属负载以及与其它化合物质复合等改性措施来提升催化活性,然而这些措施存在催化剂制备复杂,制备成本高以及催化剂的精细结构难以精准控制等问题。因此,本文提出在α-Fe2O3表面引入氧空位缺陷构筑双活性位点(Fe2+和氧空位)用于促进H2O2分解提高降解污染物降解效率。实验结果发现α-Fe2O3-x-330/H2O2体系具有较宽的pH使用范围(pH=2~10)。当pH=4时,罗丹明B的降解速率常数为0.834 h-1,而且催化剂具有磁性,易回收重复使用。催化机理研究表明氧空位缺陷α-Fe2O3-x催化剂的氧空位和Fe2+两种活性位点均可促进H2O2分解,而且氧空位的引入有利于污染物在催化剂表面的吸附进一步提高催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号