首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A series of spirooxazine-containing 2,2'-bipyridine ligands and their rhenium(i) tricarbonyl complexes has been designed and synthesized, and their photophysical, photochromic and electrochemical properties have been studied. The X-ray crystal structures of two of the complexes have been determined. Detailed studies showed that the emission properties of the complexes could readily be switched through photochromic reactions.  相似文献   

4.
5.
6.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

7.
A series of unusual dinuclear mu2-(eta2-NO)-nitrosoaniline-bridged complexes [[(CO)3Re(mu-X)]2ONC6H4NR2] (X = Cl, Br, I; R = Me, Et) with dichroic properties have been synthesised by reaction of pentacarbonylhalogenorhenium(I) [(CO)5ReX] (X = Cl, Br, I) with the corresponding nitrosoaniline derivatives R2NC6H4NO (R = Me, Et). The deeply coloured solutions in CH2Cl2 show broad UV/Vis absorptions from 595 to 620 nm depending on the halogen bridges and N substituents. Single crystals of all six compounds exhibit a pronounced linear dichroism. The molecular structures have been determined by single-crystal X-ray analyses. All the compounds contain two face-shared octahedra, with two halogens and one NO ligand as bridges. The NO ligand coordinates in a nonsymmetrical eta2-like fashion with N or O coordination to each Re centre. Therefore, the C-nitroso group and the planar NC2 moiety of NR2 both lie almost exactly within the symmetry plane of the dinuclear complexes. These complexes belong to the novel and simple class of neutral dinuclear C-nitroso complexes that include the rare, non-assisted mu2-(eta2-NO) ligand function and have only single halogen atoms in bridging positions.  相似文献   

8.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

9.
Four new series of non-disklike complexes of general formula [MCl(2)(L(n))] based upon substituted 2,6-bis(3',4',5'-trialkoxyphenyliminomethyl)pyridine ligands (L(n)) and with M=Zn(II), Co(II), Mn(II), and Ni(II) have been prepared and examined for liquid crystallinity. A complete analysis of the thermal behavior by polarized-light optical microscopy, differential scanning calorimetry, and small-angle Xray scattering revealed a rich and varied mesomorphism. Moreover, the high thermal stability of the compounds leads to rather extended mesomorphic ranges. The nature and thermal stability of each mesophase depend on both the length of the six terminal alkoxy chains, n (n=8, 10, 12, 14, 16), and on the metal ions. As demonstrated by small-angle Xray diffraction experiments, the mesomorphism of these complexes is solely of the columnar type. One compound shows an oblique columnar phase, while most of them show a hexagonal columnar phase, Col(h), and several types of rectangular columnar phase, Col(r). Xray single-crystal structures obtained for three methoxy derivatives confirm the 1:1 metal-ligand stoichiometry of the complexes, in which the metal is pentacoordinate with a distorted, trigonal bipyramidal geometry. The crystalline structures also reveal the existence of some columnar organization in the solid state, the columns resulting from an alternated stacking of the complexes in one direction. By combining these results with those obtained from dilatometry experiments, a model for the molecular organization within the mesophases is proposed in which an antiparallel arrangement of the metallomesogens is retained in the mesophase.  相似文献   

10.
The antimony aminoalkoxide and aminothiolates Sb(ECH2CH2NMe2)3 [E = O ( 1 ), S ( 2 )] were synthesized and their ability to form adducts with other metal moieties investigated. Compound 1 forms 1:1 adducts with NiI2 ( 3 ) and M(acac)2 [M = Cd ( 4 ), Ni ( 5 )], while 2 undergoes ligand exchange with AlMe3 to afford Me2AlSCH2CH2NMe2 ( 6 ). The structures of 2 – 4 and 6 were determined. Compound 2 incorporates three S, N‐chelating ligands though the interaction with nitrogen is weaker than in analogous alkoxide complexes. Product 3 reveals one iodine has migrated from nickel to antimony, and all three alkoxide ligands bridge the two metals through μ2‐O atoms. In contrast, in 4 , only one alkoxide links the antimony and cadmium. Compound 6 adopts the same structure, a chelating S,N ligand generating a tetrahedral center at aluminum, as known tBu2AlSCH2CH2NR2 species (R = Me, Et).  相似文献   

11.
A range of N‐donor ligands based on the 1H‐pyridin‐(2E)‐ylidene (PYE) motif have been prepared, including achiral and chiral examples. The ligands incorporate one to three PYE groups that coordinate to a metal through the exocyclic nitrogen atom of each PYE moiety, and the resulting metal complexes have been characterised by methods including single‐crystal X‐ray diffraction and NMR spectroscopy to examine metal–ligand bonding and ligand dynamics. Upon coordination of a PYE ligand to a proton or metal‐complex fragment, the solid‐state structures, NMR spectroscopy and DFT studies indicate that charge redistribution occurs within the PYE heterocyclic ring to give a contribution from a pyridinium–amido‐type resonance structure. Additional IR spectroscopy and computational studies suggest that PYE ligands are strong donor ligands. NMR spectroscopy shows that for metal complexes there is restricted motion about the exocyclic C? N bond, which projects the heterocyclic N‐substituent in the vicinity of the metal atom causing restricted motion in chelating‐ligand derivatives. Solid‐state structures and DFT calculations also show significant steric congestion and secondary metal–ligand interactions between the metal and ligand C? H bonds.  相似文献   

12.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

13.
14.
[(BINAP)Pt(C≡CC6H4R-p)2] (R = H, 1; CH3, 2) (BINAP = 2,2'-bis(diphenylphos- phino)-1,1'-binaphthyl) were synthesized and characterized by X-ray crystallography. Complex 1 crystallizes in triclinic, space group P with a = 11.699(3), b = 12.512(3), c = 15.611(4)(A), α = 93.277(3),β= 97.626(2), γ = 97.375(14)o, V = 2239.9(9)(A)3, Mr = 1014.92, Z = 2, Dc = 1.505 g/cm3, F(000) = 1010, μ(MoKα) = 3.244 mm-1, the final R = 0.0338 and wR = 0.0905 for 7738 observed reflections (I > 2σ(I)). Complex 2 crystallizes in monoclinic, space group P21/n with a = 18.03690 (10), b = 13.06060(10), c = 21.6913(3)(A), β= 96.5430(10)o, V = 5076.60(9)(A)3, Mr = 1132.94, Z = 4, Dc = 1.482 g/cm3, F(000) = 2272, μ(MoKα) = 2.973 mm-1, the final R = 0.0481 and wR = 0.0893 for 8916 observed reflections (I > 2σ(I)). Both complexes emit intensively photoluminescence in both solid state and fluid solution due to MLCT (Pt→-C≡CC6H4R-p) emissive state.  相似文献   

15.
1 INTRODUCTION The design and synthesis of metal-organic frame- work structure have been studied widely during the past decade not only because of their intriguing architectures but also their unexpected properties for potential practical applications in a wide number of fields, such as asymmetric catalysis, magnetism, pho- toluminescence and so on[1~3]. These novel struc- tures can be rapidly and efficiently synthesized from simple subunits, where the metal ions, bi- or multi- dentate o…  相似文献   

16.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

17.
18.
1 INTRODUCTION o-Phthalic acid (H2pht) is a versatile ligand for co-ordinating to metal ions in various modes, such asmonodentate bonding through a carboxylic O atom[1],bidentate fashion via two carboxylic O atoms[2] andtriple coordination through its three carboxylic Oatoms[3], and bridging mode with two or four Oatoms of its carboxylate groups[4]. The coordinationproperties thus allow for the preparation of complex-es with a large variety of architectures, forming iso-lated mono-, di…  相似文献   

19.
Three new complexes with the ligand 3,5‐diamino‐1,2,4‐triazole (Hdatrz), [Co32‐Hdatrz)6(H2O)6]·(NO3)8·4H2O ( 1 ), [Cu32‐Hdatrz)42‐Cl)2(H2O)2Cl2]·Cl2·4H2O·2C2H5OH ( 2 ) and {[Zn22‐SO4) (μ3‐datrz)2]·2H2O}n ( 3 ) have been synthesized and structurally characterized. Complex 1 has a linear trinuclear mixed‐valence cobalt structure with six neutral triazole ligands in the N(1), N(2)‐bridging mode. The central cobalt atom, Co(1), is coordinated to six nitrogen atoms (octahedral) whereas the terminal cobalt atom, Co(2), is coordinated to an N3O3 moiety (octahedral). In complex 1 , the uudd cyclic water clusters, nitrate anions and the trimeric cations are linked to a supramolecular structure. Complex 2 features a linear trinuclear copper(II) core, with four N(1), N(2)‐bridging triazole ligands and two chlorido bridges. The central copper atom is coordinated to an N4Cl2 moiety (octahedral) whereas the terminal copper is coordinated to an N2Cl2O moiety (square‐pyramidal). In complex 2 , tetrahedral hydrogen bonding interactions play an important role to form a supramolecular network. Complex 3 exhibits a polymeric structure, with N(1), N(2), N(4)‐bridging triazolate ligands and sulfate bridges, in which zinc is coordinated to an N3O moiety (tetrahedral). In complex 3 , water molecules and sulfate anions construct the sulfate‐water supramolecular chain with hydrogen bonding interactions. In addition, the complexes were investigated by elemental analyses, IR spectroscopic, and thermogravimetric measurements.  相似文献   

20.
By the use of Nicholson's method, the heterogeneous electron-transfer rate constants (ks) for the oxidation of a series of M2(O2CR)4 complexes have been determined in benzonitrile, where the metal M = Mo, W, Ru, or Rh and R = alkyl or aryl. For R = tBu, the values of ks follow the order M = Mo > W > Ru > Rh. No simple influence of R on ks was observed, although added ligands that are known to reversibly bind to the dinuclear center were shown to influence the E1/2 values in order of their basicity and to suppress the rate of electron transfer. The reported data are compared with those obtained for Cp2Fe0/+, Cp2*Fe0/+, and Ru(bpy)2(2)+/3+ and with earlier work on dirhenium multiply bonded compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号